Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Exponential distribution

Page semi-protected
From Wikipedia, the free encyclopedia

Probability distribution
Not to be confused with theexponential family of probability distributions.
Exponential
Probability density function
plot of the probability density function of the exponential distribution
Cumulative distribution function
Cumulative distribution function
Parametersλ>0,{\displaystyle \lambda >0,} rate, or inversescale
Supportx[0,){\displaystyle x\in [0,\infty )}
PDFλeλx{\displaystyle \lambda e^{-\lambda x}}
CDF1eλx{\displaystyle 1-e^{-\lambda x}}
Quantileln(1p)λ{\displaystyle -{\frac {\ln(1-p)}{\lambda }}}
Mean1λ{\displaystyle {\frac {1}{\lambda }}}
Medianln2λ{\displaystyle {\frac {\ln 2}{\lambda }}}
Mode0{\displaystyle 0}
Variance1λ2{\displaystyle {\frac {1}{\lambda ^{2}}}}
Skewness2{\displaystyle 2}
Excess kurtosis6{\displaystyle 6}
Entropy1lnλ{\displaystyle 1-\ln \lambda }
MGFλλt, for t<λ{\displaystyle {\frac {\lambda }{\lambda -t}},{\text{ for }}t<\lambda }
CFλλit{\displaystyle {\frac {\lambda }{\lambda -it}}}
Fisher information1λ2{\displaystyle {\frac {1}{\lambda ^{2}}}}
Kullback–Leibler divergencelnλ0λ+λλ01{\displaystyle \ln {\frac {\lambda _{0}}{\lambda }}+{\frac {\lambda }{\lambda _{0}}}-1}
Expected shortfallln(1p)+1λ{\displaystyle {\frac {-\ln(1-p)+1}{\lambda }}}

Inprobability theory andstatistics, theexponential distribution ornegative exponential distribution is theprobability distribution of the distance between events in aPoisson point process, i.e., a process in which events occur continuously and independently at a constant average rate; the distance parameter could be any meaningful mono-dimensional measure of the process, such as time between production errors, or length along a roll of fabric in the weaving manufacturing process.[1] It is a particular case of thegamma distribution. It is the continuous analogue of thegeometric distribution, and it has the key property of beingmemoryless.[2] In addition to being used for the analysis of Poisson point processes it is found in various other contexts.[3]

The exponential distribution is not the same as the class ofexponential families of distributions. This is a large class of probability distributions that includes the exponential distribution as one of its members, but also includes many other distributions, such as thenormal,binomial,gamma, andPoisson distributions.[3]

Definitions

Probability density function

Theprobability density function (pdf) of an exponential distribution is

f(x;λ)={λeλxx0,0x<0.{\displaystyle f(x;\lambda )={\begin{cases}\lambda e^{-\lambda x}&x\geq 0,\\0&x<0.\end{cases}}}

Hereλ > 0 is the parameter of the distribution, often called therate parameter. The distribution is supported on the interval [0, ∞). If arandom variableX has this distribution, we write X ~ Exp(λ).

The exponential distribution exhibitsinfinite divisibility.

Cumulative distribution function

Thecumulative distribution function is given by

F(x;λ)={1eλxx0,0x<0.{\displaystyle F(x;\lambda )={\begin{cases}1-e^{-\lambda x}&x\geq 0,\\0&x<0.\end{cases}}}

Alternative parametrization

The exponential distribution is sometimes parametrized in terms of thescale parameterβ = 1/λ, which is also the mean:f(x;β)={1βex/βx0,0x<0.F(x;β)={1ex/βx0,0x<0.{\displaystyle f(x;\beta )={\begin{cases}{\frac {1}{\beta }}e^{-x/\beta }&x\geq 0,\\0&x<0.\end{cases}}\qquad \qquad F(x;\beta )={\begin{cases}1-e^{-x/\beta }&x\geq 0,\\0&x<0.\end{cases}}}

Properties

Mean, variance, moments, and median

The mean is the probability mass centre, that is, thefirst moment.
The median is thepreimageF−1(1/2).

The mean orexpected value of an exponentially distributed random variableX with rate parameterλ is given byE[X]=1λ.{\displaystyle \operatorname {E} [X]={\frac {1}{\lambda }}.}

In light of the examples givenbelow, this makes sense; a person who receives an average of two telephone calls per hour can expect that the time between consecutive calls will be 0.5 hour, or 30 minutes.

Thevariance ofX is given byVar[X]=1λ2,{\displaystyle \operatorname {Var} [X]={\frac {1}{\lambda ^{2}}},}so thestandard deviation is equal to the mean.

Themoments ofX, fornN{\displaystyle n\in \mathbb {N} } are given byE[Xn]=n!λn.{\displaystyle \operatorname {E} \left[X^{n}\right]={\frac {n!}{\lambda ^{n}}}.}

Thecentral moments ofX, fornN{\displaystyle n\in \mathbb {N} } are given byμn=!nλn=n!λnk=0n(1)kk!.{\displaystyle \mu _{n}={\frac {!n}{\lambda ^{n}}}={\frac {n!}{\lambda ^{n}}}\sum _{k=0}^{n}{\frac {(-1)^{k}}{k!}}.}where !n is thesubfactorial ofn

Themedian ofX is given bym[X]=ln(2)λ<E[X],{\displaystyle \operatorname {m} [X]={\frac {\ln(2)}{\lambda }}<\operatorname {E} [X],}whereln refers to thenatural logarithm. Thus theabsolute difference between the mean and median is|E[X]m[X]|=1ln(2)λ<1λ=σ[X],{\displaystyle \left|\operatorname {E} \left[X\right]-\operatorname {m} \left[X\right]\right|={\frac {1-\ln(2)}{\lambda }}<{\frac {1}{\lambda }}=\operatorname {\sigma } [X],}

in accordance with themedian-mean inequality.

Memorylessness property of exponential random variable

An exponentially distributed random variableT obeys the relationPr(T>s+tT>s)=Pr(T>t),s,t0.{\displaystyle \Pr \left(T>s+t\mid T>s\right)=\Pr(T>t),\qquad \forall s,t\geq 0.}

This can be seen by considering thecomplementary cumulative distribution function:Pr(T>s+tT>s)=Pr(T>s+tT>s)Pr(T>s)=Pr(T>s+t)Pr(T>s)=eλ(s+t)eλs=eλt=Pr(T>t).{\displaystyle {\begin{aligned}\Pr \left(T>s+t\mid T>s\right)&={\frac {\Pr \left(T>s+t\cap T>s\right)}{\Pr \left(T>s\right)}}\\[4pt]&={\frac {\Pr \left(T>s+t\right)}{\Pr \left(T>s\right)}}\\[4pt]&={\frac {e^{-\lambda (s+t)}}{e^{-\lambda s}}}\\[4pt]&=e^{-\lambda t}\\[4pt]&=\Pr(T>t).\end{aligned}}}

WhenT is interpreted as the waiting time for an event to occur relative to some initial time, this relation implies that, ifT is conditioned on a failure to observe the event over some initial period of times, the distribution of the remaining waiting time is the same as the original unconditional distribution. For example, if an event has not occurred after 30 seconds, theconditional probability that occurrence will take at least 10 more seconds is equal to the unconditional probability of observing the event more than 10 seconds after the initial time.

The exponential distribution and thegeometric distribution arethe only memoryless probability distributions.

The exponential distribution is consequently also necessarily the only continuous probability distribution that has a constantfailure rate.

Quantiles

Tukey anomaly criteria for exponential probability distribution function.
Tukey criteria for anomalies.[citation needed]

Thequantile function (inverse cumulative distribution function) for Exp(λ) isF1(p;λ)=ln(1p)λ,0p<1{\displaystyle F^{-1}(p;\lambda )={\frac {-\ln(1-p)}{\lambda }},\qquad 0\leq p<1}

Thequartiles are therefore:

  • first quartile: ln(4/3)/λ
  • median: ln(2)/λ
  • third quartile: ln(4)/λ

And as a consequence theinterquartile range is ln(3)/λ.

Conditional Value at Risk (Expected Shortfall)

The conditional value at risk (CVaR) also known as theexpected shortfall or superquantile for Exp(λ) is derived as follows:[4]

q¯α(X)=11αα1qp(X)dp=1(1α)α1ln(1p)λdp=1λ(1α)1α0ln(y)dy=1λ(1α)01αln(y)dy=1λ(1α)[(1α)ln(1α)(1α)]=ln(1α)+1λ{\displaystyle {\begin{aligned}{\bar {q}}_{\alpha }(X)&={\frac {1}{1-\alpha }}\int _{\alpha }^{1}q_{p}(X)dp\\&={\frac {1}{(1-\alpha )}}\int _{\alpha }^{1}{\frac {-\ln(1-p)}{\lambda }}dp\\&={\frac {-1}{\lambda (1-\alpha )}}\int _{1-\alpha }^{0}-\ln(y)dy\\&={\frac {-1}{\lambda (1-\alpha )}}\int _{0}^{1-\alpha }\ln(y)dy\\&={\frac {-1}{\lambda (1-\alpha )}}[(1-\alpha )\ln(1-\alpha )-(1-\alpha )]\\&={\frac {-\ln(1-\alpha )+1}{\lambda }}\\\end{aligned}}}

Buffered Probability of Exceedance (bPOE)

Main article:Buffered probability of exceedance

The buffered probability of exceedance is one minus the probability level at which the CVaR equals the thresholdx{\displaystyle x}. It is derived as follows:[4]

p¯x(X)={1α|q¯α(X)=x}={1α|ln(1α)+1λ=x}={1α|ln(1α)=1λx}={1α|eln(1α)=e1λx}={1α|1α=e1λx}=e1λx{\displaystyle {\begin{aligned}{\bar {p}}_{x}(X)&=\{1-\alpha |{\bar {q}}_{\alpha }(X)=x\}\\&=\{1-\alpha |{\frac {-\ln(1-\alpha )+1}{\lambda }}=x\}\\&=\{1-\alpha |\ln(1-\alpha )=1-\lambda x\}\\&=\{1-\alpha |e^{\ln(1-\alpha )}=e^{1-\lambda x}\}=\{1-\alpha |1-\alpha =e^{1-\lambda x}\}=e^{1-\lambda x}\end{aligned}}}

Kullback–Leibler divergence

The directedKullback–Leibler divergence innats ofeλ{\displaystyle e^{\lambda }} ("approximating" distribution) fromeλ0{\displaystyle e^{\lambda _{0}}} ('true' distribution) is given byΔ(λ0λ)=Eλ0(logpλ0(x)pλ(x))=Eλ0(logλ0eλ0xλeλx)=log(λ0)log(λ)(λ0λ)Eλ0(x)=log(λ0)log(λ)+λλ01.{\displaystyle {\begin{aligned}\Delta (\lambda _{0}\parallel \lambda )&=\mathbb {E} _{\lambda _{0}}\left(\log {\frac {p_{\lambda _{0}}(x)}{p_{\lambda }(x)}}\right)\\&=\mathbb {E} _{\lambda _{0}}\left(\log {\frac {\lambda _{0}e^{\lambda _{0}x}}{\lambda e^{\lambda x}}}\right)\\&=\log(\lambda _{0})-\log(\lambda )-(\lambda _{0}-\lambda )E_{\lambda _{0}}(x)\\&=\log(\lambda _{0})-\log(\lambda )+{\frac {\lambda }{\lambda _{0}}}-1.\end{aligned}}}

Maximum entropy distribution

Among all continuous probability distributions withsupport[0, ∞) and meanμ, the exponential distribution withλ = 1/μ has the largestdifferential entropy. In other words, it is themaximum entropy probability distribution for arandom variateX which is greater than or equal to zero and for which E[X] is fixed.[5]

Distribution of the minimum of exponential random variables

LetX1, ...,Xn beindependent exponentially distributed random variables with rate parametersλ1, ...,λn. Thenmin{X1,,Xn}{\displaystyle \min \left\{X_{1},\dotsc ,X_{n}\right\}}is also exponentially distributed, with parameterλ=λ1++λn.{\displaystyle \lambda =\lambda _{1}+\dotsb +\lambda _{n}.}

This can be seen by considering thecomplementary cumulative distribution function:Pr(min{X1,,Xn}>x)=Pr(X1>x,,Xn>x)=i=1nPr(Xi>x)=i=1nexp(xλi)=exp(xi=1nλi).{\displaystyle {\begin{aligned}&\Pr \left(\min\{X_{1},\dotsc ,X_{n}\}>x\right)\\={}&\Pr \left(X_{1}>x,\dotsc ,X_{n}>x\right)\\={}&\prod _{i=1}^{n}\Pr \left(X_{i}>x\right)\\={}&\prod _{i=1}^{n}\exp \left(-x\lambda _{i}\right)=\exp \left(-x\sum _{i=1}^{n}\lambda _{i}\right).\end{aligned}}}

The index of the variable which achieves the minimum is distributed according to the categorical distributionPr(Xk=min{X1,,Xn})=λkλ1++λn.{\displaystyle \Pr \left(X_{k}=\min\{X_{1},\dotsc ,X_{n}\}\right)={\frac {\lambda _{k}}{\lambda _{1}+\dotsb +\lambda _{n}}}.}

A proof can be seen by lettingI=argmini{1,,n}{X1,,Xn}{\displaystyle I=\operatorname {argmin} _{i\in \{1,\dotsb ,n\}}\{X_{1},\dotsc ,X_{n}\}}. Then,Pr(I=k)=0Pr(Xk=x)Pr(ikXi>x)dx=0λkeλkx(i=1,ikneλix)dx=λk0e(λ1++λn)xdx=λkλ1++λn.{\displaystyle {\begin{aligned}\Pr(I=k)&=\int _{0}^{\infty }\Pr(X_{k}=x)\Pr(\forall _{i\neq k}X_{i}>x)\,dx\\&=\int _{0}^{\infty }\lambda _{k}e^{-\lambda _{k}x}\left(\prod _{i=1,i\neq k}^{n}e^{-\lambda _{i}x}\right)dx\\&=\lambda _{k}\int _{0}^{\infty }e^{-\left(\lambda _{1}+\dotsb +\lambda _{n}\right)x}dx\\&={\frac {\lambda _{k}}{\lambda _{1}+\dotsb +\lambda _{n}}}.\end{aligned}}}

Note thatmax{X1,,Xn}{\displaystyle \max\{X_{1},\dotsc ,X_{n}\}}is not exponentially distributed, ifX1, ...,Xn do not all have parameter 0.[6]

Joint moments of i.i.d. exponential order statistics

LetX1,,Xn{\displaystyle X_{1},\dotsc ,X_{n}} ben{\displaystyle n}independent and identically distributed exponential random variables with rate parameterλ.LetX(1),,X(n){\displaystyle X_{(1)},\dotsc ,X_{(n)}} denote the correspondingorder statistics.Fori<j{\displaystyle i<j} , the joint momentE[X(i)X(j)]{\displaystyle \operatorname {E} \left[X_{(i)}X_{(j)}\right]} of the order statisticsX(i){\displaystyle X_{(i)}} andX(j){\displaystyle X_{(j)}} is given byE[X(i)X(j)]=k=0j11(nk)λE[X(i)]+E[X(i)2]=k=0j11(nk)λk=0i11(nk)λ+k=0i11((nk)λ)2+(k=0i11(nk)λ)2.{\displaystyle {\begin{aligned}\operatorname {E} \left[X_{(i)}X_{(j)}\right]&=\sum _{k=0}^{j-1}{\frac {1}{(n-k)\lambda }}\operatorname {E} \left[X_{(i)}\right]+\operatorname {E} \left[X_{(i)}^{2}\right]\\&=\sum _{k=0}^{j-1}{\frac {1}{(n-k)\lambda }}\sum _{k=0}^{i-1}{\frac {1}{(n-k)\lambda }}+\sum _{k=0}^{i-1}{\frac {1}{((n-k)\lambda )^{2}}}+\left(\sum _{k=0}^{i-1}{\frac {1}{(n-k)\lambda }}\right)^{2}.\end{aligned}}}

This can be seen by invoking thelaw of total expectation and the memoryless property:E[X(i)X(j)]=0E[X(i)X(j)X(i)=x]fX(i)(x)dx=x=0xE[X(j)X(j)x]fX(i)(x)dx(since X(i)=xX(j)x)=x=0x[E[X(j)]+x]fX(i)(x)dx(by the memoryless property)=k=0j11(nk)λE[X(i)]+E[X(i)2].{\displaystyle {\begin{aligned}\operatorname {E} \left[X_{(i)}X_{(j)}\right]&=\int _{0}^{\infty }\operatorname {E} \left[X_{(i)}X_{(j)}\mid X_{(i)}=x\right]f_{X_{(i)}}(x)\,dx\\&=\int _{x=0}^{\infty }x\operatorname {E} \left[X_{(j)}\mid X_{(j)}\geq x\right]f_{X_{(i)}}(x)\,dx&&\left({\textrm {since}}~X_{(i)}=x\implies X_{(j)}\geq x\right)\\&=\int _{x=0}^{\infty }x\left[\operatorname {E} \left[X_{(j)}\right]+x\right]f_{X_{(i)}}(x)\,dx&&\left({\text{by the memoryless property}}\right)\\&=\sum _{k=0}^{j-1}{\frac {1}{(n-k)\lambda }}\operatorname {E} \left[X_{(i)}\right]+\operatorname {E} \left[X_{(i)}^{2}\right].\end{aligned}}}

The first equation follows from thelaw of total expectation.The second equation exploits the fact that once we condition onX(i)=x{\displaystyle X_{(i)}=x}, it must follow thatX(j)x{\displaystyle X_{(j)}\geq x}. The third equation relies on the memoryless property to replaceE[X(j)X(j)x]{\displaystyle \operatorname {E} \left[X_{(j)}\mid X_{(j)}\geq x\right]} withE[X(j)]+x{\displaystyle \operatorname {E} \left[X_{(j)}\right]+x}.

Sum of two independent exponential random variables

The probability distribution function (PDF) of a sum of two independent random variables is theconvolution of their individual PDFs. IfX1{\displaystyle X_{1}} andX2{\displaystyle X_{2}} are independent exponential random variables with respective rate parametersλ1{\displaystyle \lambda _{1}} andλ2,{\displaystyle \lambda _{2},} then the probability density ofZ=X1+X2{\displaystyle Z=X_{1}+X_{2}} is given byfZ(z)=fX1(x1)fX2(zx1)dx1=0zλ1eλ1x1λ2eλ2(zx1)dx1=λ1λ2eλ2z0ze(λ2λ1)x1dx1={λ1λ2λ2λ1(eλ1zeλ2z) if λ1λ2λ2zeλz if λ1=λ2=λ.{\displaystyle {\begin{aligned}f_{Z}(z)&=\int _{-\infty }^{\infty }f_{X_{1}}(x_{1})f_{X_{2}}(z-x_{1})\,dx_{1}\\&=\int _{0}^{z}\lambda _{1}e^{-\lambda _{1}x_{1}}\lambda _{2}e^{-\lambda _{2}(z-x_{1})}\,dx_{1}\\&=\lambda _{1}\lambda _{2}e^{-\lambda _{2}z}\int _{0}^{z}e^{(\lambda _{2}-\lambda _{1})x_{1}}\,dx_{1}\\&={\begin{cases}{\dfrac {\lambda _{1}\lambda _{2}}{\lambda _{2}-\lambda _{1}}}\left(e^{-\lambda _{1}z}-e^{-\lambda _{2}z}\right)&{\text{ if }}\lambda _{1}\neq \lambda _{2}\\[4pt]\lambda ^{2}ze^{-\lambda z}&{\text{ if }}\lambda _{1}=\lambda _{2}=\lambda .\end{cases}}\end{aligned}}}The entropy of this distribution is available in closed form: assumingλ1>λ2{\displaystyle \lambda _{1}>\lambda _{2}} (without loss of generality), thenH(Z)=1+γ+ln(λ1λ2λ1λ2)+ψ(λ1λ1λ2),{\displaystyle {\begin{aligned}H(Z)&=1+\gamma +\ln \left({\frac {\lambda _{1}-\lambda _{2}}{\lambda _{1}\lambda _{2}}}\right)+\psi \left({\frac {\lambda _{1}}{\lambda _{1}-\lambda _{2}}}\right),\end{aligned}}}whereγ{\displaystyle \gamma } is theEuler-Mascheroni constant, andψ(){\displaystyle \psi (\cdot )} is thedigamma function.[7]

In the case of equal rate parameters, the result is anErlang distribution with shape 2 and parameterλ,{\displaystyle \lambda ,} which in turn is a special case ofgamma distribution.

The sum of n independent Exp(λ) exponential random variables is Gamma(n,λ) distributed.

Related distributions

Other related distributions:

Statistical inference

Below, suppose random variableX is exponentially distributed with rate parameter λ, andx1,,xn{\displaystyle x_{1},\dotsc ,x_{n}} aren independent samples fromX, with sample meanx¯{\displaystyle {\bar {x}}}.

Parameter estimation

Themaximum likelihood estimator for λ is constructed as follows.

Thelikelihood function for λ, given anindependent and identically distributed samplex = (x1, ...,xn) drawn from the variable, is:L(λ)=i=1nλexp(λxi)=λnexp(λi=1nxi)=λnexp(λnx¯),{\displaystyle L(\lambda )=\prod _{i=1}^{n}\lambda \exp(-\lambda x_{i})=\lambda ^{n}\exp \left(-\lambda \sum _{i=1}^{n}x_{i}\right)=\lambda ^{n}\exp \left(-\lambda n{\overline {x}}\right),}

where:x¯=1ni=1nxi{\displaystyle {\overline {x}}={\frac {1}{n}}\sum _{i=1}^{n}x_{i}}is the sample mean.

The derivative of the likelihood function's logarithm is:ddλlnL(λ)=ddλ(nlnλλnx¯)=nλnx¯ {>0,0<λ<1x¯,=0,λ=1x¯,<0,λ>1x¯.{\displaystyle {\frac {d}{d\lambda }}\ln L(\lambda )={\frac {d}{d\lambda }}\left(n\ln \lambda -\lambda n{\overline {x}}\right)={\frac {n}{\lambda }}-n{\overline {x}}\ {\begin{cases}>0,&0<\lambda <{\frac {1}{\overline {x}}},\\[8pt]=0,&\lambda ={\frac {1}{\overline {x}}},\\[8pt]<0,&\lambda >{\frac {1}{\overline {x}}}.\end{cases}}}

Consequently, themaximum likelihood estimate for the rate parameter is:λ^mle=1x¯=nixi{\displaystyle {\widehat {\lambda }}_{\text{mle}}={\frac {1}{\overline {x}}}={\frac {n}{\sum _{i}x_{i}}}}

This isnot anunbiased estimator ofλ,{\displaystyle \lambda ,} althoughx¯{\displaystyle {\overline {x}}}is an unbiased[10] MLE[11] estimator of1/λ{\displaystyle 1/\lambda } and the distribution mean.

The bias ofλ^mle{\displaystyle {\widehat {\lambda }}_{\text{mle}}} is equal toBE[(λ^mleλ)]=λn1{\displaystyle B\equiv \operatorname {E} \left[\left({\widehat {\lambda }}_{\text{mle}}-\lambda \right)\right]={\frac {\lambda }{n-1}}}which yields thebias-corrected maximum likelihood estimatorλ^mle=λ^mleB.{\displaystyle {\widehat {\lambda }}_{\text{mle}}^{*}={\widehat {\lambda }}_{\text{mle}}-B.}

An approximate minimizer ofmean squared error (see also:bias–variance tradeoff) can be found, assuming a sample size greater than two, with a correction factor to the MLE:λ^=(n2n)(1x¯)=n2ixi{\displaystyle {\widehat {\lambda }}=\left({\frac {n-2}{n}}\right)\left({\frac {1}{\bar {x}}}\right)={\frac {n-2}{\sum _{i}x_{i}}}}This is derived from the mean and variance of theinverse-gamma distribution,Inv-Gamma(n,λ){\textstyle {\mbox{Inv-Gamma}}(n,\lambda )}.[12]

Fisher information

TheFisher information, denotedI(λ){\displaystyle {\mathcal {I}}(\lambda )}, for an estimator of the rate parameterλ{\displaystyle \lambda } is given as:I(λ)=E[(λlogf(x;λ))2|λ]=(λlogf(x;λ))2f(x;λ)dx{\displaystyle {\mathcal {I}}(\lambda )=\operatorname {E} \left[\left.\left({\frac {\partial }{\partial \lambda }}\log f(x;\lambda )\right)^{2}\right|\lambda \right]=\int \left({\frac {\partial }{\partial \lambda }}\log f(x;\lambda )\right)^{2}f(x;\lambda )\,dx}

Plugging in the distribution and solving gives:I(λ)=0(λlogλeλx)2λeλxdx=0(1λx)2λeλxdx=λ2.{\displaystyle {\mathcal {I}}(\lambda )=\int _{0}^{\infty }\left({\frac {\partial }{\partial \lambda }}\log \lambda e^{-\lambda x}\right)^{2}\lambda e^{-\lambda x}\,dx=\int _{0}^{\infty }\left({\frac {1}{\lambda }}-x\right)^{2}\lambda e^{-\lambda x}\,dx=\lambda ^{-2}.}

This determines the amount of information each independent sample of an exponential distribution carries about the unknown rate parameterλ{\displaystyle \lambda }.

Confidence intervals

An exact 100(1 − α)% confidence interval for the rate parameter of an exponential distribution is given by:[13]2nλ^mleχα2,2n2<1λ<2nλ^mleχ1α2,2n2,{\displaystyle {\frac {2n}{{\widehat {\lambda }}_{\textrm {mle}}\chi _{{\frac {\alpha }{2}},2n}^{2}}}<{\frac {1}{\lambda }}<{\frac {2n}{{\widehat {\lambda }}_{\textrm {mle}}\chi _{1-{\frac {\alpha }{2}},2n}^{2}}}\,,}which is also equal to2nx¯χα2,2n2<1λ<2nx¯χ1α2,2n2,{\displaystyle {\frac {2n{\overline {x}}}{\chi _{{\frac {\alpha }{2}},2n}^{2}}}<{\frac {1}{\lambda }}<{\frac {2n{\overline {x}}}{\chi _{1-{\frac {\alpha }{2}},2n}^{2}}}\,,}whereχ2
p,v
is the100(p)percentile of thechi squared distribution withvdegrees of freedom, n is the number of observations and x-bar is the sample average. A simple approximation to the exact interval endpoints can be derived using a normal approximation to theχ2
p,v
distribution. This approximation gives the following values for a 95% confidence interval:λlower=λ^(11.96n)λupper=λ^(1+1.96n){\displaystyle {\begin{aligned}\lambda _{\text{lower}}&={\widehat {\lambda }}\left(1-{\frac {1.96}{\sqrt {n}}}\right)\\\lambda _{\text{upper}}&={\widehat {\lambda }}\left(1+{\frac {1.96}{\sqrt {n}}}\right)\end{aligned}}}

This approximation may be acceptable for samples containing at least 15 to 20 elements.[14]

Bayesian inference with a conjugate prior

Theconjugate prior for the exponential distribution is thegamma distribution (of which the exponential distribution is a special case). The following parameterization of the gamma probability density function is useful:

Gamma(λ;α,β)=βαΓ(α)λα1exp(λβ).{\displaystyle \operatorname {Gamma} (\lambda ;\alpha ,\beta )={\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\lambda ^{\alpha -1}\exp(-\lambda \beta ).}

Theposterior distributionp can then be expressed in terms of the likelihood function defined above and a gamma prior:

p(λ)L(λ)Γ(λ;α,β)=λnexp(λnx¯)βαΓ(α)λα1exp(λβ)λ(α+n)1exp(λ(β+nx¯)).{\displaystyle {\begin{aligned}p(\lambda )&\propto L(\lambda )\Gamma (\lambda ;\alpha ,\beta )\\&=\lambda ^{n}\exp \left(-\lambda n{\overline {x}}\right){\frac {\beta ^{\alpha }}{\Gamma (\alpha )}}\lambda ^{\alpha -1}\exp(-\lambda \beta )\\&\propto \lambda ^{(\alpha +n)-1}\exp(-\lambda \left(\beta +n{\overline {x}}\right)).\end{aligned}}}

Now the posterior densityp has been specified up to a missing normalizing constant. Since it has the form of a gamma pdf, this can easily be filled in, and one obtains:

p(λ)=Gamma(λ;α+n,β+nx¯).{\displaystyle p(\lambda )=\operatorname {Gamma} (\lambda ;\alpha +n,\beta +n{\overline {x}}).}

Here thehyperparameterα can be interpreted as the number of prior observations, andβ as the sum of the prior observations.The posterior mean here is:α+nβ+nx¯.{\displaystyle {\frac {\alpha +n}{\beta +n{\overline {x}}}}.}

Bayesian inference with a calibrating prior

The exponential distribution is one of a number of statistical distributions withgroup structure. As a result of the group structure, the exponential has an associatedHaar measure, which is1/λ.{\displaystyle 1/\lambda .}The use of theHaar measure as theprior (known as the Haar prior) in a Bayesian prediction gives probabilities that are perfectly calibrated, for any underlying true parameter values.[15][16][17] Perfectly calibrated probabilities have the property that the predicted probabilities match the frequency of out-of-sample events exactly. For the exponential, there is an exact expression for Bayesian predictions generated using the Haar prior, given by

pHaarprior(xn+1x1,,xn)=nn+1(x¯)n(nx¯+xn+1)n+1.{\displaystyle p_{\rm {Haar-prior}}(x_{n+1}\mid x_{1},\ldots ,x_{n})={\frac {n^{n+1}\left({\overline {x}}\right)^{n}}{\left(n{\overline {x}}+x_{n+1}\right)^{n+1}}}.}

This is an example of calibrating prior prediction, in which the prior is chosen to improve calibration (and, in this case, to make the calibration perfect). Calibrating prior prediction for the exponential using the Haar prior is implemented in theR software package fitdistcp.[1]

The same prediction can be derived from a number of other perspectives, as discussed in theprediction section below.

Occurrence and applications

Occurrence of events

The exponential distribution occurs naturally when describing the lengths of the inter-arrival times in a homogeneousPoisson process.

The exponential distribution may be viewed as a continuous counterpart of thegeometric distribution, which describes the number ofBernoulli trials necessary for adiscrete process to change state. In contrast, the exponential distribution describes the time for a continuous process to change state.

In real-world scenarios, the assumption of a constant rate (or probability per unit time) is rarely satisfied. For example, the rate of incoming phone calls differs according to the time of day. But if we focus on a time interval during which the rate is roughly constant, such as from 2 to 4 p.m. during work days, the exponential distribution can be used as a good approximate model for the time until the next phone call arrives. Similar caveats apply to the following examples which yield approximately exponentially distributed variables:

  • The time until a radioactiveparticle decays, or the time between clicks of aGeiger counter
  • The time between receiving one telephone call and the next
  • The time until default (on payment to company debt holders) in reduced-form credit risk modeling

Exponential variables can also be used to model situations where certain events occur with a constant probability per unit length, such as the distance betweenmutations on aDNA strand, or betweenroadkills on a given road.

Inqueuing theory, the service times of agents in a system (e.g. how long it takes for a bank teller etc. to serve a customer) are often modeled as exponentially distributed variables. (The arrival of customers for instance is also modeled by thePoisson distribution if the arrivals are independent and distributed identically.) The length of a process that can be thought of as a sequence of several independent tasks follows theErlang distribution (which is the distribution of the sum of several independent exponentially distributed variables).

Reliability theory andreliability engineering also make extensive use of the exponential distribution. Because of the memoryless property of this distribution, it is well-suited to model the constanthazard rate portion of thebathtub curve used in reliability theory. It is also very convenient because it is so easy to addfailure rates in a reliability model. The exponential distribution is however not appropriate to model the overall lifetime of organisms or technical devices, because the "failure rates" here are not constant: more failures occur for very young and for very old systems.

Fitted cumulative exponential distribution to annually maximum 1-day rainfalls

Inphysics, if you observe agas at a fixedtemperature andpressure in a uniformgravitational field, the heights of the various molecules also follow an approximate exponential distribution, known as theBarometric formula. This is a consequence of the entropy property mentioned below.

Inhydrology, the exponential distribution is used to analyze extreme values of such variables as monthly and annual maximum values of daily rainfall and river discharge volumes.[18]

The blue picture illustrates an example of fitting the exponential distribution to ranked annually maximum one-day rainfalls showing also the 90%confidence belt based on thebinomial distribution. The rainfall data are represented byplotting positions as part of thecumulative frequency analysis.

In operating-rooms management, the distribution of surgery duration for a category of surgeries withno typical work-content (like in an emergency room, encompassing all types of surgeries).

Prediction

Having observed a sample ofn data points from an unknown exponential distribution a common task is to use these samples to make predictions about future data from the same source. A common predictive distribution over future samples is the so-called plug-in distribution, formed by plugging a suitable estimate for the rate parameterλ into the exponential density function. A common choice of estimate is the one provided by the principle of maximum likelihood, and using this yields the predictive density over a future samplexn+1, conditioned on the observed samplesx = (x1, ...,xn) given bypML(xn+1x1,,xn)=(1x¯)exp(xn+1x¯).{\displaystyle p_{\rm {ML}}(x_{n+1}\mid x_{1},\ldots ,x_{n})=\left({\frac {1}{\overline {x}}}\right)\exp \left(-{\frac {x_{n+1}}{\overline {x}}}\right).}

The Bayesian approach provides a predictive distribution which takes into account the uncertainty of the estimated parameter, although this may depend crucially on the choice of prior.

A predictive distribution free of the issues of choosing priors that arise under the subjective Bayesian approach is

pCNML(xn+1x1,,xn)=nn+1(x¯)n(nx¯+xn+1)n+1,{\displaystyle p_{\rm {CNML}}(x_{n+1}\mid x_{1},\ldots ,x_{n})={\frac {n^{n+1}\left({\overline {x}}\right)^{n}}{\left(n{\overline {x}}+x_{n+1}\right)^{n+1}}},}

which can be considered as

  1. a frequentistconfidence distribution, obtained from the distribution of the pivotal quantityxn+1/x¯{\displaystyle {x_{n+1}}/{\overline {x}}};[19]
  2. a profile predictive likelihood, obtained by eliminating the parameterλ from the joint likelihood ofxn+1 andλ by maximization;[20]
  3. an objective Bayesian predictive posterior distribution, obtained using the non-informativeJeffreys prior 1/λ, which is equal to the right Haar prior in this case. Predictions generated using the right Haar prior are guaranteed to give perfectly calibrated probabilities.[21][22]
  4. the Conditional Normalized Maximum Likelihood (CNML) predictive distribution, from information theoretic considerations.[23]

The accuracy of a predictive distribution may be measured using the distance or divergence between the true exponential distribution with rate parameter,λ0, and the predictive distribution based on the samplex. TheKullback–Leibler divergence is a commonly used, parameterisation free measure of the difference between two distributions. Letting Δ(λ0||p) denote the Kullback–Leibler divergence between an exponential with rate parameterλ0 and a predictive distributionp it can be shown that

Eλ0[Δ(λ0pML)]=ψ(n)+1n1log(n)Eλ0[Δ(λ0pCNML)]=ψ(n)+1nlog(n){\displaystyle {\begin{aligned}\operatorname {E} _{\lambda _{0}}\left[\Delta (\lambda _{0}\parallel p_{\rm {ML}})\right]&=\psi (n)+{\frac {1}{n-1}}-\log(n)\\\operatorname {E} _{\lambda _{0}}\left[\Delta (\lambda _{0}\parallel p_{\rm {CNML}})\right]&=\psi (n)+{\frac {1}{n}}-\log(n)\end{aligned}}}

where the expectation is taken with respect to the exponential distribution with rate parameterλ0 ∈ (0, ∞), andψ( · ) is the digamma function. It is clear that the CNML predictive distribution is strictly superior to the maximum likelihood plug-in distribution in terms of average Kullback–Leibler divergence for all sample sizesn > 0.

Random variate generation

Further information:Non-uniform random variate generation

A conceptually very simple method for generating exponentialvariates is based oninverse transform sampling: Given a random variateU drawn from theuniform distribution on the unit interval(0, 1), the variate

T=F1(U){\displaystyle T=F^{-1}(U)}

has an exponential distribution, whereF−1 is thequantile function, defined by

F1(p)=ln(1p)λ.{\displaystyle F^{-1}(p)={\frac {-\ln(1-p)}{\lambda }}.}

Moreover, ifU is uniform on (0, 1), then so is 1 −U. This means one can generate exponential variates as follows:

T=ln(U)λ.{\displaystyle T={\frac {-\ln(U)}{\lambda }}.}

Other methods for generating exponential variates are discussed by Knuth[24] and Devroye.[25]

A fast method for generating a set of ready-ordered exponential variates without using a sorting routine is also available.[25]

See also

References

  1. ^"7.2: Exponential Distribution".Statistics LibreTexts. 2021-07-15. Retrieved2024-10-11.
  2. ^"Exponential distribution | mathematics | Britannica".www.britannica.com. Retrieved2024-10-11.
  3. ^abWeisstein, Eric W."Exponential Distribution".mathworld.wolfram.com. Retrieved2024-10-11.
  4. ^abNorton, Matthew; Khokhlov, Valentyn; Uryasev, Stan (2019)."Calculating CVaR and bPOE for common probability distributions with application to portfolio optimization and density estimation"(PDF).Annals of Operations Research.299 (1–2). Springer:1281–1315.arXiv:1811.11301.doi:10.1007/s10479-019-03373-1. Archived fromthe original(PDF) on 2023-03-31. Retrieved2023-02-27.
  5. ^Park, Sung Y.; Bera, Anil K. (2009)."Maximum entropy autoregressive conditional heteroskedasticity model"(PDF).Journal of Econometrics.150 (2). Elsevier:219–230.doi:10.1016/j.jeconom.2008.12.014. Archived fromthe original(PDF) on 2016-03-07. Retrieved2011-06-02.
  6. ^Michael, Lugo."The expectation of the maximum of exponentials"(PDF). Archived fromthe original(PDF) on 20 December 2016. Retrieved13 December 2016.
  7. ^Eckford, Andrew W.; Thomas, Peter J. (2016). "Entropy of the sum of two independent, non-identically-distributed exponential random variables".arXiv:1609.02911 [cs.IT].
  8. ^abcdefghiLeemis, Lawrence M.; McQuestion, Jacquelyn T. (February 2008)."Univariate Distribution Relationships"(PDF).The American Statistician.62 (1): 45-53.doi:10.1198/000313008X270448.
  9. ^Ibe, Oliver C. (2014).Fundamentals of Applied Probability and Random Processes (2nd ed.). Academic Press. p. 128.ISBN 9780128010358.
  10. ^Richard Arnold Johnson; Dean W. Wichern (2007).Applied Multivariate Statistical Analysis. Pearson Prentice Hall.ISBN 978-0-13-187715-3. Retrieved10 August 2012.
  11. ^NIST/SEMATECH e-Handbook of Statistical Methods
  12. ^Elfessi, Abdulaziz; Reineke, David M. (2001)."A Bayesian Look at Classical Estimation: The Exponential Distribution".Journal of Statistics Education.9 (1).doi:10.1080/10691898.2001.11910648.
  13. ^Ross, Sheldon M. (2009).Introduction to probability and statistics for engineers and scientists (4th ed.). Associated Press. p. 267.ISBN 978-0-12-370483-2.
  14. ^Guerriero, V. (2012)."Power Law Distribution: Method of Multi-scale Inferential Statistics".Journal of Modern Mathematics Frontier.1:21–28.
  15. ^Severini, T. A. (2002-12-01)."On an exact probability matching property of right-invariant priors".Biometrika.89 (4):952–957.doi:10.1093/biomet/89.4.952.ISSN 0006-3444.
  16. ^Gerrard, R.; Tsanakas, A. (2011)."Failure Probability Under Parameter Uncertainty".Risk Analysis.31 (5):727–744.Bibcode:2011RiskA..31..727G.doi:10.1111/j.1539-6924.2010.01549.x.ISSN 1539-6924.PMID 21175720.
  17. ^Jewson, Stephen; Sweeting, Trevor; Jewson, Lynne (2025-02-20)."Reducing reliability bias in assessments of extreme weather risk using calibrating priors".Advances in Statistical Climatology, Meteorology and Oceanography.11 (1):1–22.Bibcode:2025ASCMO..11....1J.doi:10.5194/ascmo-11-1-2025.ISSN 2364-3579.
  18. ^Ritzema, H.P., ed. (1994).Frequency and Regression Analysis. Chapter 6 in: Drainage Principles and Applications, Publication 16, International Institute for Land Reclamation and Improvement (ILRI), Wageningen, The Netherlands. pp. 175–224.ISBN 90-70754-33-9.
  19. ^Lawless, J. F.; Fredette, M. (2005). "Frequentist predictions intervals and predictive distributions".Biometrika.92 (3):529–542.doi:10.1093/biomet/92.3.529.
  20. ^Bjornstad, J.F. (1990)."Predictive Likelihood: A Review".Statist. Sci.5 (2):242–254.doi:10.1214/ss/1177012175.
  21. ^Severini, Thomas A.; Mukerjee, Rahul; Ghosh, Malay (2002-12-01)."On an exact probability matching property of right-invariant priors".Biometrika.89 (4):952–957.doi:10.1093/biomet/89.4.952.ISSN 0006-3444.
  22. ^Jewson, Stephen; Sweeting, Trevor; Jewson, Lynne (2025-02-20)."Reducing reliability bias in assessments of extreme weather risk using calibrating priors".Advances in Statistical Climatology, Meteorology and Oceanography.11 (1):1–22.Bibcode:2025ASCMO..11....1J.doi:10.5194/ascmo-11-1-2025.ISSN 2364-3579.
  23. ^D. F. Schmidt and E. Makalic, "Universal Models for the Exponential Distribution",IEEE Transactions on Information Theory, Volume 55, Number 7, pp. 3087–3090, 2009doi:10.1109/TIT.2009.2018331
  24. ^Donald E. Knuth (1998).The Art of Computer Programming, volume 2:Seminumerical Algorithms, 3rd edn. Boston: Addison–Wesley.ISBN 0-201-89684-2.See section 3.4.1, p. 133.
  25. ^abLuc Devroye (1986).Non-Uniform Random Variate Generation. New York: Springer-Verlag.ISBN 0-387-96305-7.Seechapter IX, section 2, pp. 392–401.

External links

The WikibookProbability has a page on the topic of:Exponential distribution
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Exponential_distribution&oldid=1331666774"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp