This articleneeds attention from an expert in Physics. The specific problem is:article is more opinionated than encyclopedic; citations and other revisions needed to make it a standard treatment of a standard topic.WikiProject Physics may be able to help recruit an expert.(April 2021) |
Ingeneral relativity, anexact solution is a (typicallyclosed form)solution of the Einstein field equations whose derivation does not invoke simplifying approximations of the equations, though the starting point for that derivation may be an idealized case like a perfectly spherical shape of matter. Mathematically, finding an exact solution means finding aLorentzian manifold equipped withtensor fields modeling states of ordinary matter, such as afluid, or classicalnon-gravitational fields such as theelectromagnetic field.
These tensor fields should obey any relevant physical laws (for example, any electromagnetic field must satisfyMaxwell's equations). Following a standard recipe which is widely used inmathematical physics, these tensor fields should also give rise to specific contributions to thestress–energy tensor.[1] (A field is described by aLagrangian, varying with respect to the field should give the field equations and varying with respect to the metric should give the stress-energy contribution due to the field.)
Finally, when all the contributions to the stress–energy tensor are added up, the result must be asolution of the Einstein field equations
In the above field equations, is theEinstein tensor, computed uniquely from themetric tensor which is part of the definition of a Lorentzian manifold. Since giving the Einstein tensor does not fully determine theRiemann tensor, but leaves theWeyl tensor unspecified (see theRicci decomposition), the Einstein equation may be considered a kind of compatibility condition: the spacetime geometry must be consistent with the amount and motion of any matter or non-gravitational fields, in the sense that the immediate presence "here and now" of non-gravitational energy–momentum causes a proportional amount of Ricci curvature "here and now". Moreover, takingcovariant derivatives of the field equations and applying theBianchi identities, it is found that a suitably varying amount/motion of non-gravitational energy–momentum can cause ripples in curvature to propagate asgravitational radiation, even acrossvacuum regions, which contain no matter or non-gravitational fields.
Any Lorentzian manifold is a solution of theEinstein field equation for some right hand side. This is illustrated by the following procedure:
This shows that there are two complementary ways to use general relativity:
Within the first approach the alleged stress–energy tensor must arise in the standard way from a "reasonable" matter distribution or non-gravitational field. In practice, this notion is pretty clear, especially if we restrict the admissible non-gravitational fields to the only one known in 1916, theelectromagnetic field. But ideally we would like to have somemathematical characterization that states some purely mathematical test which we can apply to any putative "stress–energy tensor", which passes everything which might arise from a "reasonable" physical scenario, and rejects everything else. No such characterization is known. Instead, we have crude tests known as theenergy conditions, which are similar to placing restrictions on theeigenvalues andeigenvectors of alinear operator. On the one hand, these conditions are far too permissive: they would admit "solutions" which almost no-one believes are physically reasonable. On the other, they may be far too restrictive: the most popular energy conditions are apparently violated by theCasimir effect.
Einstein also recognized another element of the definition of an exact solution: it should be a Lorentzian manifold (meeting additional criteria), i.e. asmooth manifold. But in working with general relativity, it turns out to be very useful to admit solutions which are not everywhere smooth; examples include many solutions created by matching a perfect fluid interior solution to a vacuum exterior solution, and impulsive plane waves. Once again, the creative tension between elegance and convenience, respectively, has proven difficult to resolve satisfactorily.
In addition to suchlocal objections, we have the far more challenging problem that there are very many exact solutions which are locally unobjectionable, butglobally exhibit causally suspect features such asclosed timelike curves or structures with points of separation ("trouser worlds"). Some of the best known exact solutions, in fact, have globally a strange character.
Many well-known exact solutions belong to one of several types, depending upon the intended physical interpretation of the stress–energy tensor:
In addition to such well established phenomena as fluids or electromagnetic waves, one can contemplate models in which the gravitational field is produced entirely by the field energy of various exotic hypothetical fields:
One possibility which has received little attention (perhaps because the mathematics is so challenging) is the problem of modeling anelastic solid. Presently, it seems that no exact solutions for this specific type are known.
Below we have sketched a classification by physical interpretation. Solutions can also be organized using theSegre classification of the possible algebraic symmetries of theRicci tensor:
The remaining Segre types have no particular physical interpretation and most of them cannot correspond to any known type of contribution to the stress–energy tensor.
Noteworthy examples of vacuum solutions, electrovacuum solutions, and so forth, are listed in specialized articles (see below). These solutions contain at most one contribution to theenergy–momentum tensor, due to a specific kind of matter or field. However, there are some notable exact solutions which contain two or three contributions, including:
The Einstein field equations are a system of coupled,nonlinear partial differential equations. In general, this makes them hard to solve. Nonetheless, several effective techniques for obtaining exact solutions have been established.
The simplest involves imposing symmetry conditions on themetric tensor, such asstationarity (symmetry undertime translation) or axisymmetry (symmetry under rotation about somesymmetry axis). With sufficiently clever assumptions of this sort, it is often possible to reduce the Einstein field equation to a much simpler system of equations, even a singlepartial differential equation (as happens in the case of stationary axisymmetric vacuum solutions, which are characterized by theErnst equation) or a system ofordinary differential equations (as happens in the case of theSchwarzschild vacuum).
This naive approach usually works best if one uses aframe field rather than a coordinate basis.
A related idea involves imposing algebraic symmetry conditions on theWeyl tensor,Ricci tensor, orRiemann tensor. These are often stated in terms of thePetrov classification of the possible symmetries of the Weyl tensor, or theSegre classification of the possible symmetries of the Ricci tensor. As will be apparent from the discussion above, suchAnsätze often do have some physical content, although this might not be apparent from their mathematical form.
This second kind of symmetry approach has often been used with theNewman–Penrose formalism, which uses spinorial quantities for more efficient bookkeeping.
Even after such symmetry reductions, the reduced system of equations is often difficult to solve. For example, the Ernst equation is a nonlinear partial differential equation somewhat resembling thenonlinear Schrödinger equation (NLS).
But recall that theconformal group onMinkowski spacetime is the symmetry group of theMaxwell equations. Recall too that solutions of theheat equation can be found by assuming a scalingAnsatz. These notions are merely special cases ofSophus Lie's notion of thepoint symmetry of a differential equation (or system of equations), and as Lie showed, this can provide an avenue of attack upon any differential equation which has a nontrivial symmetry group. Indeed, both the Ernst equation and the NLS have nontrivial symmetry groups, and some solutions can be found by taking advantage of their symmetries. These symmetry groups are often infinite dimensional, but this is not always a useful feature.
Emmy Noether showed that a slight but profound generalization of Lie's notion of symmetry can result in an even more powerful method of attack. This turns out to be closely related to the discovery that some equations, which are said to becompletely integrable, enjoy aninfinite sequence of conservation laws. Quite remarkably, both the Ernst equation (which arises several ways in the studies of exact solutions) and the NLS turn out to be completely integrable. They are therefore susceptible to solution by techniques resembling theinverse scattering transform which was originally developed to solve theKorteweg-de Vries (KdV) equation, a nonlinear partial differential equation which arises in the theory ofsolitons, and which is also completely integrable. Unfortunately, the solutions obtained by these methods are often not as nice as one would like. For example, in a manner analogous to the way that one obtains a multiple soliton solution of the KdV from the single soliton solution (which can be found from Lie's notion of point symmetry), one can obtain a multiple Kerr object solution, but unfortunately, this has some features which make it physically implausible.[2]
There are also various transformations (seeBelinski-Zakharov transform) which can transform (for example) a vacuum solution found by other means into a new vacuum solution, or into an electrovacuum solution, or a fluid solution. These are analogous to theBäcklund transformations known from the theory of certainpartial differential equations, including some famous examples ofsoliton equations. This is no coincidence, since this phenomenon is also related to the notions of Noether and Lie regarding symmetry. Unfortunately, even when applied to a "well understood", globally admissible solution, these transformations often yield a solution which is poorly understood and their general interpretation is still unknown.
Given the difficulty of constructing explicit small families of solutions, much less presenting something like a "general" solution to the Einstein field equation, or even a "general" solution to thevacuum field equation, a very reasonable approach is to try to find qualitative properties which hold for all solutions, or at least for allvacuum solutions. One of the most basic questions one can ask is: do solutions exist, and if so,how many?
To get started, we should adopt a suitableinitial value formulation of the field equation, which gives two new systems of equations, one giving aconstraint on theinitial data, and the other giving a procedure forevolving this initial data into a solution. Then, one can prove that solutions exist at leastlocally, using ideas not terribly dissimilar from those encountered in studying other differential equations.
To get some idea of "how many" solutions we might optimistically expect, we can appeal to Einstein'sconstraint counting method. A typical conclusion from this style of argument is that ageneric vacuum solution to the Einstein field equation can be specified by giving four arbitrary functions of three variables and six arbitrary functions of two variables. These functions specify initial data, from which a unique vacuum solution can beevolved. (In contrast, the Ernst vacuums, the family of all stationary axisymmetric vacuum solutions, are specified by giving just two functions of two variables, which are not even arbitrary, but must satisfy a system of two coupled nonlinear partial differential equations. This may give some idea of how just tiny a typical "large" family of exact solutions really is, in the grand scheme of things.)
However, this crude analysis falls far short of the much more difficult question ofglobal existence of solutions. The global existence results which are known so far turn out to involve another idea.
We can imagine "disturbing" the gravitational field outside some isolated massive object by "sending in some radiation from infinity". We can ask: what happens as the incoming radiation interacts with the ambient field? In the approach of classicalperturbation theory, we can start with Minkowski vacuum (or another very simple solution, such as the de Sitter lambdavacuum), introduce very small metric perturbations, and retain only terms up to some order in a suitable perturbation expansion—somewhat like evaluating a kind of Taylor series for the geometry of our spacetime. This approach is essentially the idea behind thepost-Newtonian approximations used in constructing models of a gravitating system such as abinary pulsar. However, perturbation expansions are generally not reliable for questions of long-term existence and stability, in the case of nonlinear equations.
The full field equation is highly nonlinear, so we really want to prove that the Minkowski vacuum is stable under small perturbations which are treated using the fully nonlinear field equation. This requires the introduction of many new ideas. The desired result, sometimes expressed by the slogan that the Minkowski vacuum is nonlinearly stable, was finally proven byDemetrios Christodoulou andSergiu Klainerman only in 1993.[3] Analogous results are known for lambdavac perturbations of the de Sitter lambdavacuum (Helmut Friedrich) and for electrovacuum perturbations of the Minkowski vacuum (Nina Zipser). In contrast,anti-de Sitter spacetime is known to be unstable under certain conditions.[4][5]
Another issue we might worry about is whether the net mass-energy of anisolated concentration of positive mass-energy density (and momentum) always yields a well-defined (and non-negative) net mass. This result, known as thepositive energy theorem was finally proven byRichard Schoen andShing-Tung Yau in 1979, who made an additional technical assumption about the nature of the stress–energy tensor. The original proof is very difficult;Edward Witten soon presented a much shorter "physicist's proof", which has been justified by mathematicians—using further very difficult arguments.Roger Penrose and others have also offered alternative arguments for variants of the original positive energy theorem.