Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Eulerian number

From Wikipedia, the free encyclopedia
Polynomial sequence
Not to be confused withEuler number orEuler's number.

Incombinatorics, theEulerian numberA(n,k){\textstyle A(n,k)} is the number ofpermutations of the numbers 1 ton{\textstyle n} in which exactlyk{\textstyle k} elements are greater than the previous element (permutations withk{\textstyle k} "ascents").

Leonhard Euler investigated them and associatedpolynomials in his 1755 bookInstitutiones calculi differentialis. He first studied them in 1749 (though first printed in 1768).[1]

The polynomials presently known as Eulerian polynomials in Euler's work from 1755, Institutiones calculi differentialis, part 2, p. 485/6. The coefficients of these polynomials are known as Eulerian numbers.

Other notations forA(n,k){\textstyle A(n,k)} areE(n,k){\textstyle E(n,k)} andnk{\displaystyle \textstyle \left\langle {n \atop k}\right\rangle }.

Definition

[edit]

TheEulerian polynomialsAn(t){\displaystyle A_{n}(t)} are defined by the exponential generating function

n=0An(t)xnn!=t1te(t1)x=(1e(t1)x1t1)1.{\displaystyle \sum _{n=0}^{\infty }A_{n}(t)\,{\frac {x^{n}}{n!}}={\frac {t-1}{t-e^{(t-1)\,x}}}=\left(1-{\frac {e^{(t-1)x}-1}{t-1}}\right)^{-1}.}

TheEulerian numbersA(n,k){\displaystyle A(n,k)} may also be defined as the coefficients of the Eulerian polynomials:

An(t)=k=0nA(n,k)tk.{\displaystyle A_{n}(t)=\sum _{k=0}^{n}A(n,k)\,t^{k}.}

An explicit formula forA(n,k){\textstyle A(n,k)} is[2]

A plot of the Eulerian numbers with the second argument fixed to 5.
A plot of the Eulerian numbers with the second argument fixed to 5.
A(n,k)=i=0k(1)i(n+1i)(k+1i)n.{\displaystyle A(n,k)=\sum _{i=0}^{k}(-1)^{i}{\binom {n+1}{i}}(k+1-i)^{n}.}

Basic properties

[edit]

A tabulation of the numbers in atriangular array is called theEuler triangle orEuler's triangle. It shares some common characteristics withPascal's triangle. Values ofA(n,k){\textstyle A(n,k)} (sequenceA008292 in theOEIS) for0n9{\textstyle 0\leq n\leq 9} are:

 k
n 
012345678
01
11
211
3141
4111111
512666261
6157302302571
711201191241611911201
812474293156191561942932471
91502146088823415619088234146085021

Computation

[edit]

For larger values ofn{\textstyle n},A(n,k){\textstyle A(n,k)} can also be calculated using therecursive formula[3]

A(n,k)=(nk)A(n1,k1)+(k+1)A(n1,k).{\displaystyle A(n,k)=(n-k)\,A(n-1,k-1)+(k+1)\,A(n-1,k).}

This formula can be motivated from the combinatorial definition and thus serves as a natural starting point for the theory.

For small values ofn{\textstyle n} andk{\textstyle k}, the values ofA(n,k){\textstyle A(n,k)} can be calculated by hand. For example

nkPermutationsA(n,k)
10(1)A(1,0) = 1
20(2, 1)A(2,0) = 1
1(1,2)A(2,1) = 1
30(3, 2, 1)A(3,0) = 1
1(1,3, 2), (2, 1,3), (2,3, 1) and (3, 1,2)A(3,1) = 4
2(1,2,3)A(3,2) = 1

Applying the recurrence to one example, we may find

A(4,1)=(41)A(3,0)+(1+1)A(3,1)=31+24=11.{\displaystyle A(4,1)=(4-1)\,A(3,0)+(1+1)\,A(3,1)=3\cdot 1+2\cdot 4=11.}

Likewise, the Eulerian polynomials can be computed by the recurrence

A0(t)=1,{\displaystyle A_{0}(t)=1,}
An(t)=An1(t)t(1t)+An1(t)(1+(n1)t), for n>1.{\displaystyle A_{n}(t)=A_{n-1}'(t)\cdot t\,(1-t)+A_{n-1}(t)\cdot (1+(n-1)\,t),{\text{ for }}n>1.}

The second formula can be cast into an inductive form,

An(t)=k=0n1(nk)Ak(t)(t1)n1k, for n>1.{\displaystyle A_{n}(t)=\sum _{k=0}^{n-1}{\binom {n}{k}}A_{k}(t)\cdot (t-1)^{n-1-k},{\text{ for }}n>1.}

Identities

[edit]

For any property partitioning a finite set into finitely many smaller sets, the sum of the cardinalities of the smaller sets equals the cardinality of the bigger set. The Eulerian numbers partition the permutations ofn{\displaystyle n} elements, so their sum equals thefactorialn!{\displaystyle n!}:k=0nA(n,k)=n!.{\displaystyle \sum _{k=0}^{n}A(n,k)=n!\,.}(The summandk=n{\displaystyle k=n} is 0 forn>0{\displaystyle n>0}, but is included to give the correct sumA(0,0)=0!{\displaystyle A(0,0)=0!} whenn=0{\displaystyle n=0}.)

Much more generally, for a fixed functionf:RC{\displaystyle f\colon \mathbb {R} \rightarrow \mathbb {C} } integrable on the interval(0,n){\displaystyle (0,n)}[4]

k=0n1A(n,k)f(k)=n!0101f(x1++xn)dx1dxn{\displaystyle \sum _{k=0}^{n-1}A(n,k)\,f(k)=n!\int _{0}^{1}\cdots \int _{0}^{1}f\left(\left\lfloor x_{1}+\cdots +x_{n}\right\rfloor \right){\mathrm {d} }x_{1}\cdots {\mathrm {d} }x_{n}}

Worpitzky's identity[5] expressesxn{\textstyle x^{n}} as thelinear combination of Eulerian numbers withbinomial coefficients:

k=0n1A(n,k)(x+kn)=xn.{\displaystyle \sum _{k=0}^{n-1}A(n,k){\binom {x+k}{n}}=x^{n}.}

From this, it follows that

k=1mkn=k=0n1A(n,k)(m+k+1n+1).{\displaystyle \sum _{k=1}^{m}k^{n}=\sum _{k=0}^{n-1}A(n,k){\binom {m+k+1}{n+1}}.}

Eulerian numbers appear as the coefficients of thepolylogarithm for negative integer inputs:Lin(z)=1(1z)n+1k=0n1A(n,k)znk(n=1,2,3,).{\displaystyle \operatorname {Li} _{-n}(z)={1 \over (1-z)^{n+1}}\sum _{k=0}^{n-1}A(n,k)z^{n-k}\qquad (n=1,2,3,\ldots ).}

Formulas involving alternating sums

[edit]

Thealternating sum of the Eulerian numbers for a fixed value ofn{\textstyle n} is related to theBernoulli numberBn+1{\textstyle B_{n+1}}

k=0n1(1)kA(n,k)=2n+1(2n+11)Bn+1n+1, for n>0.{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}A(n,k)=2^{n+1}(2^{n+1}-1){\frac {B_{n+1}}{n+1}},{\text{ for }}n>0.}

Furthermore,

k=0n1(1)kA(n,k)(n1k)=0, for n>1{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n-1}{k}}}=0,{\text{ for }}n>1}

and

k=0n1(1)kA(n,k)(nk)=(n+1)Bn, for n>1{\displaystyle \sum _{k=0}^{n-1}(-1)^{k}{\frac {A(n,k)}{\binom {n}{k}}}=(n+1)B_{n},{\text{ for }}n>1}

Formulas involving the polynomials

[edit]

The symmetry property implies:

An(t)=tn1An(t1){\displaystyle A_{n}(t)=t^{n-1}A_{n}(t^{-1})}

The Eulerian numbers are involved in thegenerating function for the sequence ofnth powers:

i=1inxi=1(1x)n+1k=0nA(n,k)xk+1=x(1x)n+1An(x){\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k+1}={\frac {x}{(1-x)^{n+1}}}A_{n}(x)}

An explicit expression for Eulerian polynomials is[6]

An(t)=k=0n{nk}k!(t1)nk{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}

where{nk}{\textstyle \left\{{n \atop k}\right\}} is theStirling number of the second kind.

Geometric interpretations

[edit]

The Eulerian numbers have two important geometric interpretations involvingconvex polytopes.

First of all, the identity

i=0(i+1)nxi=1(1x)n+1k=0nA(n,k)xk{\displaystyle \sum _{i=0}^{\infty }(i+1)^{n}x^{i}={\frac {1}{(1-x)^{n+1}}}\sum _{k=0}^{n}A(n,k)\,x^{k}}

implies that the Eulerian numbers form theh{\displaystyle h^{\ast }}-vector of the standardn{\displaystyle n}-dimensionalhypercube, which is theconvex hull of all0,1{\displaystyle 0,1}-vectors inRn{\displaystyle \mathbb {R} ^{n}}.

Secondly, the identityAn(t)=k=0n{nk}k!(t1)nk{\displaystyle A_{n}(t)=\sum _{k=0}^{n}\left\{{n \atop k}\right\}k!(t-1)^{n-k}}means that the Eulerian numbers also form theh{\displaystyle h}-vector of thesimple polytope which isdual to then{\displaystyle n}-dimensionalpermutohedron, which is the convex hull of all permutations of the vector(1,2,,n){\displaystyle (1,2,\ldots ,n)} inRn{\displaystyle \mathbb {R} ^{n}}.

Type B Eulerian numbers

[edit]

Thehyperoctahedral group of ordern{\displaystyle n} is the group of allsigned permutations of the numbers1{\displaystyle 1} ton{\displaystyle n}, meaning bijectionsπ{\displaystyle \pi } from the set{n,n+1,,1,1,2,,n}{\displaystyle \{-n,-n+1,\ldots ,-1,1,2,\ldots ,n\}} to itself with the property thatπ(i)=π(i){\displaystyle \pi (-i)=-\pi (i)} for alli{\displaystyle i}. Just as thesymmetric group of ordern{\displaystyle n} (i.e., the group of all permutations of the numbers1{\displaystyle 1} ton{\displaystyle n}) is theCoxeter group of TypeAn1{\displaystyle A_{n-1}}, the hyperoctahedral group of ordern{\displaystyle n} is the Coxeter group of TypeBn{\displaystyle B_{n}}.

Given an elementπ{\displaystyle \pi } of the hyperoctahedral group of ordern{\displaystyle n} aType B descent ofπ{\displaystyle \pi } is an indexi{0,1,,n1}{\displaystyle i\in \{0,1,\ldots ,n-1\}} for whichπ(i)>π(i1){\displaystyle \pi (i)>\pi (i-1)}, with the convention thatπ(0)=0{\displaystyle \pi (0)=0}. TheType B Eulerian numberB(n,k){\displaystyle B(n,k)} is the number of elements of the hyperoctahedral group of ordern{\displaystyle n} with exactlyk{\displaystyle k} descents; see Chow and Gessel.[7]

The table ofB(n,k){\displaystyle B(n,k)} (sequenceA060187 in theOEIS) is

 k
n 
012345
01
111
2161
3123231
4176230761
51237168216822371

The corresponding polynomialsMn(x)=k=0nB(n,k)xk{\displaystyle M_{n}(x)=\sum _{k=0}^{n}B(n,k)x^{k}} are calledmidpoint Eulerian polynomials because of their use in interpolation and spline theory; see Schoenberg.[8]

The Type B Eulerian numbers and polynomials satisfy many similar identities, and have many similar properties, as the Type A, i.e., usual, Eulerian numbers and polynomials. For example, for anyn1{\displaystyle n\geq 1},

i=0(2i+1)nxi=Mn(x)(1x)n+1.{\displaystyle \sum _{i=0}^{\infty }(2i+1)^{n}x^{i}={\frac {M_{n}(x)}{(1-x)^{n+1}}}.}

And the Type B Eulerian numbers give the h-vector of the simple polytope dual to the Type B permutohedron.

In fact, one can define Eulerian numbers for anyfinite Coxeter group with analogous properties: see part III of the textbook of Petersen in the references.

Eulerian numbers of the second order

[edit]

The permutations of themultiset{1,1,2,2,,n,n}{\textstyle \{1,1,2,2,\ldots ,n,n\}} which have the property that for eachk, all the numbers appearing between the two occurrences ofk in the permutation are greater thank are counted by thedouble factorial number(2n1)!!{\textstyle (2n-1)!!}. These are calledStirling permutations.

The Eulerian number of the second order, denotednm{\textstyle \left\langle \!\left\langle {n \atop m}\right\rangle \!\right\rangle }, counts the number of all such Stirling permutations that have exactlym ascents. For instance, forn = 3 there are 15 such permutations, 1 with no ascents, 8 with a single ascent, and 6 with two ascents:

332211,
221133, 221331, 223311, 233211, 113322, 133221, 331122, 331221,
112233, 122133, 112332, 123321, 133122, 122331.

The Eulerian numbers of the second order satisfy the recurrence relation, that follows directly from the above definition:

nk=(2nk1)n1k1+(k+1)n1k,{\displaystyle \left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle =(2n-k-1)\left\langle \!\!\left\langle {n-1 \atop k-1}\right\rangle \!\!\right\rangle +(k+1)\left\langle \!\!\left\langle {n-1 \atop k}\right\rangle \!\!\right\rangle ,}

withinitial condition forn = 0, expressed inIverson bracket notation:

0k=[k=0].{\displaystyle \left\langle \!\!\left\langle {0 \atop k}\right\rangle \!\!\right\rangle =[k=0].}

Correspondingly, the Eulerian polynomial of second order, here denotedPn (no standard notation exists for them) are

Pn(x):=k=0nnkxk{\displaystyle P_{n}(x):=\sum _{k=0}^{n}\left\langle \!\!\left\langle {n \atop k}\right\rangle \!\!\right\rangle x^{k}}

and the above recurrence relations are translated into a recurrence relation for the sequencePn(x):

Pn+1(x)=(2nx+1)Pn(x)x(x1)Pn(x){\displaystyle P_{n+1}(x)=(2nx+1)P_{n}(x)-x(x-1)P_{n}^{\prime }(x)}

with initial conditionP0(x)=1{\displaystyle P_{0}(x)=1}. The latter recurrence may be written in a somewhat more compact form by means of anintegrating factor:

(x1)2n2Pn+1(x)=(x(1x)2n1Pn(x)){\displaystyle (x-1)^{-2n-2}P_{n+1}(x)=\left(x\,(1-x)^{-2n-1}P_{n}(x)\right)^{\prime }}

so that the rational function

un(x):=(x1)2nPn(x){\displaystyle u_{n}(x):=(x-1)^{-2n}P_{n}(x)}

satisfies a simple autonomous recurrence:

un+1=(x1xun),u0=1{\displaystyle u_{n+1}=\left({\frac {x}{1-x}}u_{n}\right)^{\prime },\quad u_{0}=1}

Whence one obtains the Eulerian polynomials of second order asPn(x)=(1x)2nun(x){\textstyle P_{n}(x)=(1-x)^{2n}u_{n}(x)}, and the Eulerian numbers of second order as their coefficients.

The Eulerian polynomials of the second order satisfy an identity analogous to the identity

i=1inxi=xAn(x)(1x)n+1{\displaystyle \sum _{i=1}^{\infty }i^{n}x^{i}={\frac {xA_{n}(x)}{(1-x)^{n+1}}}}

satisfied by the usual Eulerian polynomials. Specifically, as proved by Gessel and Stanley,[9] they satisfy the identity

m=0{n+mm}xm=xPn(x)(1x)2n+1{\displaystyle \sum _{m=0}^{\infty }\left\{{n+m \atop m}\right\}x^{m}={\frac {xP_{n}(x)}{(1-x)^{2n+1}}}}

where again the{nk}{\displaystyle \left\{{n \atop k}\right\}} denote theStirling numbers of the second kind. (This appearance of the Stirling numbers explains the terminology "Stirling permutations.")

The following table displays the first few second-order Eulerian numbers:

 k
n 
012345678
01
11
212
3186
41225824
5152328444120
61114145244003708720
7124056103212058140339845040
814941995019580064402078530434113640320
911004672601062500576550012440064110262963733920362880

The sum of then-th row, which is also the valuePn(1){\textstyle P_{n}(1)}, is(2n1)!!{\textstyle (2n-1)!!}.

Indexing the second-order Eulerian numbers comes in three flavors:

  • (sequenceA008517 in theOEIS) following Riordan and Comtet,
  • (sequenceA201637 in theOEIS) following Graham, Knuth, and Patashnik,
  • (sequenceA340556 in theOEIS), extending the definition of Gessel and Stanley.

References

[edit]

Citations

[edit]
  1. ^Euler, Leonhard (1768-01-01)."Remarques sur un beau rapport entre les séries des puissances tant directes que réciproques".Mémoires de l'académie des sciences de Berlin:83–106.
  2. ^(L. Comtet 1974, p. 243)
  3. ^Comtet, Louis.Advanced Combinatorics(PDF). p. 51.
  4. ^Exercise 6.65 inConcrete Mathematics by Graham, Knuth and Patashnik.
  5. ^Worpitzky, J. (1883)."Studien über die Bernoullischen und Eulerschen Zahlen".Journal für die reine und angewandte Mathematik.94:203–232.
  6. ^Qi, Feng; Guo, Bai-Ni (2017-08-01)."Explicit formulas and recurrence relations for higher order Eulerian polynomials".Indagationes Mathematicae.28 (4):884–891.doi:10.1016/j.indag.2017.06.010.ISSN 0019-3577.
  7. ^Chow, Chak-On; Gessel, Ira M. (March 2007). "On the descent numbers and major indices for the hyperoctahedral group".Advances in Applied Mathematics.38 (3):275–301.doi:10.1016/j.aam.2006.07.003.
  8. ^Schoenberg, I. J. (1972). "Cardinal Interpolation and Spline Functions IV. The Exponential Euler Splines".Linear Operators and Approximation / Lineare Operatoren und Approximation:382–404.doi:10.1007/978-3-0348-7283-6_34.ISBN 978-3-0348-7285-0.
  9. ^Gessel, Ira; Stanley, Richard P (1 January 1978). "Stirling polynomials".Journal of Combinatorial Theory, Series A.24 (1):24–33.doi:10.1016/0097-3165(78)90042-0.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Eulerian_number&oldid=1337847260"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp