Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Lagrange, Euler, and Kovalevskaya tops

From Wikipedia, the free encyclopedia
(Redirected fromEuler top)
Integrable rigid bodies in classical mechanics
Leonhard Euler
Joseph-Louis Lagrange
Sofia Vasilyevna Kovalevskaya

Inclassical mechanics, therotation of arigid body such as aspinning top under the influence ofgravity is not, in general, anintegrable problem. There are however three famous cases that are integrable, theEuler, theLagrange, and theKovalevskaya top, which are in fact the only integrable cases when the system is subject toholonomic constraints.[1][2][3] In addition to the energy, each of these tops involves two additionalconstants of motion that give rise to theintegrability.

The Euler top describes a free top without any particular symmetry moving in the absence of any externaltorque, and for which the fixed point is thecenter of gravity. The Lagrange top is a symmetric top, in which two moments ofinertia are the same and the center of gravity lies on thesymmetry axis. The Kovalevskaya top[4][5] is a special symmetric top with a unique ratio of themoments of inertia which satisfy the relation

I1=I2=2I3,{\displaystyle I_{1}=I_{2}=2I_{3},}

That is, two moments of inertia are equal, the third is half as large, and the center of gravity is located in theplane perpendicular to the symmetry axis (parallel to the plane of the two degenerate principle axes).

Hamiltonian formulation of classical tops

[edit]

The configuration of a classical top[6] is described at timet{\displaystyle t} by three time-dependentprincipal axes, defined by the threeorthogonal vectorse^1{\displaystyle {\hat {\mathbf {e} }}^{1}},e^2{\displaystyle {\hat {\mathbf {e} }}^{2}} ande^3{\displaystyle {\hat {\mathbf {e} }}^{3}} with corresponding moments of inertiaI1{\displaystyle I_{1}},I2{\displaystyle I_{2}} andI3{\displaystyle I_{3}} and theangular velocity about those axes. In aHamiltonian formulation of classical tops, theconjugate dynamical variables are the components of theangular momentum vectorL{\displaystyle {\bf {L}}} along the principal axes

(1,2,3)=(Le^1,Le^2,Le^3){\displaystyle (\ell _{1},\ell _{2},\ell _{3})=(\mathbf {L} \cdot {\hat {\bf {e}}}^{1},{\bf {{L}\cdot {\hat {\mathbf {e} }}^{2},{\bf {{L}\cdot {\hat {\mathbf {e} }}^{3})}}}}}

and thez-components of the three principal axes,

(n1,n2,n3)=(z^e^1,z^e^2,z^e^3){\displaystyle (n_{1},n_{2},n_{3})=(\mathbf {\hat {z}} \cdot {\hat {\mathbf {e} }}^{1},\mathbf {\hat {z}} \cdot {\hat {\mathbf {e} }}^{2},\mathbf {\hat {z}} \cdot {\hat {\mathbf {e} }}^{3})}

ThePoisson bracket relations of these variables is given by

{a,b}=εabcc, {a,nb}=εabcnc, {na,nb}=0{\displaystyle \{\ell _{a},\ell _{b}\}=\varepsilon _{abc}\ell _{c},\ \{\ell _{a},n_{b}\}=\varepsilon _{abc}n_{c},\ \{n_{a},n_{b}\}=0}

If the position of the center of mass is given byRcm=(ae^1+be^2+ce^3){\displaystyle {\vec {R}}_{cm}=(a\mathbf {\hat {e}} ^{1}+b\mathbf {\hat {e}} ^{2}+c\mathbf {\hat {e}} ^{3})}, then the Hamiltonian of a top is given by

H=(1)22I1+(2)22I2+(3)22I3+mg(an1+bn2+cn3)=(1)22I1+(2)22I2+(3)22I3+mgRcmz^,{\displaystyle H={\frac {(\ell _{1})^{2}}{2I_{1}}}+{\frac {(\ell _{2})^{2}}{2I_{2}}}+{\frac {(\ell _{3})^{2}}{2I_{3}}}+mg(an_{1}+bn_{2}+cn_{3})={\frac {(\ell _{1})^{2}}{2I_{1}}}+{\frac {(\ell _{2})^{2}}{2I_{2}}}+{\frac {(\ell _{3})^{2}}{2I_{3}}}+mg{\vec {R}}_{cm}\cdot \mathbf {\hat {z}} ,}

The equations of motion are then determined by

˙a={H,a},n˙a={H,na}.{\displaystyle {\dot {\ell }}_{a}=\{H,\ell _{a}\},{\dot {n}}_{a}=\{H,n_{a}\}.}

Explicitly, these are˙1=(1I31I2)23+mg(cn2bn3){\displaystyle {\dot {\ell }}_{1}=\left({\frac {1}{I_{3}}}-{\frac {1}{I_{2}}}\right)\ell _{2}\ell _{3}+mg(cn_{2}-bn_{3})}n˙1=3I3n22I2n3{\displaystyle {\dot {n}}_{1}={\frac {\ell _{3}}{I_{3}}}n_{2}-{\frac {\ell _{2}}{I_{2}}}n_{3}}and cyclic permutations of the indices.

Mathematical description of phase space

[edit]

In mathematical terms, the spatial configuration of the body is described by a point on theLie groupSO(3){\displaystyle SO(3)}, the three-dimensionalrotation group, which is the rotation matrix from the lab frame to the body frame. The full configuration space or phase space is thecotangent bundleTSO(3){\displaystyle T^{*}SO(3)}, with the fibersTRSO(3){\displaystyle T_{R}^{*}SO(3)} parametrizing the angular momentum at spatial configurationR{\displaystyle R}. The Hamiltonian is a function on this phase space.

Euler top

[edit]

The Euler top, named afterLeonhard Euler, is an untorqued top (for example, a top in free fall), with Hamiltonian

HE=(1)22I1+(2)22I2+(3)22I3,{\displaystyle H_{\rm {E}}={\frac {(\ell _{1})^{2}}{2I_{1}}}+{\frac {(\ell _{2})^{2}}{2I_{2}}}+{\frac {(\ell _{3})^{2}}{2I_{3}}},}

The four constants of motion are the energyHE{\displaystyle H_{\rm {E}}} and the three components of angular momentum in the lab frame,

(L1,L2,L3)=1e^1+2e^2+3e^3.{\displaystyle (L_{1},L_{2},L_{3})=\ell _{1}\mathbf {\hat {e}} ^{1}+\ell _{2}\mathbf {\hat {e}} ^{2}+\ell _{3}\mathbf {\hat {e}} ^{3}.}

Lagrange top

[edit]

The Lagrange top,[7] named afterJoseph-Louis Lagrange, is a symmetric top with the center of mass along the symmetry axis at location,Rcm=he^3{\displaystyle \mathbf {R} _{\rm {cm}}=h\mathbf {\hat {e}} ^{3}}, with Hamiltonian

HL=(1)2+(2)22I+(3)22I3+mghn3.{\displaystyle H_{\rm {L}}={\frac {(\ell _{1})^{2}+(\ell _{2})^{2}}{2I}}+{\frac {(\ell _{3})^{2}}{2I_{3}}}+mghn_{3}.}

The four constants of motion are the energyHL{\displaystyle H_{\rm {L}}}, the angular momentum component along the symmetry axis,3{\displaystyle \ell _{3}}, the angular momentum in thez-direction

Lz=1n1+2n2+3n3,{\displaystyle L_{z}=\ell _{1}n_{1}+\ell _{2}n_{2}+\ell _{3}n_{3},}

and the magnitude of then-vector

n2=n12+n22+n32{\displaystyle n^{2}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}}

Kovalevskaya top

[edit]

The Kovalevskaya top[4][5] is a symmetric top in whichI1=I2=2I{\displaystyle I_{1}=I_{2}=2I},I3=I{\displaystyle I_{3}=I} and the center of mass lies in the plane perpendicular to the symmetry axisRcm=he^1{\displaystyle \mathbf {R} _{\rm {cm}}=h\mathbf {\hat {e}} ^{1}}. It was discovered bySofia Kovalevskaya in 1888 and presented in her paper "Sur le problème de la rotation d'un corps solide autour d'un point fixe", which won the Prix Bordin from theFrench Academy of Sciences in 1888. The Hamiltonian is

HK=(1)2+(2)2+2(3)22I+mghn1.{\displaystyle H_{\rm {K}}={\frac {(\ell _{1})^{2}+(\ell _{2})^{2}+2(\ell _{3})^{2}}{2I}}+mghn_{1}.}

The four constants of motion are the energyHK{\displaystyle H_{\rm {K}}}, the Kovalevskaya invariant

K=ξ+ξ{\displaystyle K=\xi _{+}\xi _{-}}

where the variablesξ±{\displaystyle \xi _{\pm }} are defined by

ξ±=(1±i2)22mghI(n1±in2),{\displaystyle \xi _{\pm }=(\ell _{1}\pm i\ell _{2})^{2}-2mghI(n_{1}\pm in_{2}),}

the angular momentum component in thez-direction,

Lz=1n1+2n2+3n3,{\displaystyle L_{z}=\ell _{1}n_{1}+\ell _{2}n_{2}+\ell _{3}n_{3},}

and the magnitude of then-vector

n2=n12+n22+n32.{\displaystyle n^{2}=n_{1}^{2}+n_{2}^{2}+n_{3}^{2}.}

Nonholonomic constraints

[edit]

If the constraints are relaxed to allownonholonomic constraints, there are other possible integrable tops besides the three well-known cases. The nonholonomicGoryachev–Chaplygin top (introduced by D. Goryachev in 1900[8] and integrated bySergey Chaplygin in 1948[9][10]) is also integrable (I1=I2=4I3{\displaystyle I_{1}=I_{2}=4I_{3}}). Its center of gravity lies in theequatorial plane.[11]

See also

[edit]

References

[edit]
  1. ^Audin, Michèle (1996),Spinning Tops: A Course on Integrable Systems, New York:Cambridge University Press,ISBN 9780521779197.
  2. ^Whittaker, E. T. (1952).A Treatise on the Analytical Dynamics of Particles and Rigid Bodies. Cambridge University Press.ISBN 9780521358835.
  3. ^Strogatz, Steven (2019).Infinite Powers. New York: Houghton Mifflin Harcourt. p. 287.ISBN 978-1786492968.More importantly she [Sofja Wassiljewna Kowalewskaja] proved that no other solvable tops could exist. She had found the last one
  4. ^abKovalevskaya, Sofia (1889),"Sur le problème de la rotation d'un corps solide autour d'un point fixe",Acta Mathematica (in French),12:177–232
  5. ^abPerelemov, A. M. (2002).Teoret. Mat. Fiz., Volume 131, Number 2, pp. 197–205.(in French)
  6. ^Herbert Goldstein, Charles P. Poole, and John L. Safko (2002).Classical Mechanics (3rd Edition), Addison-Wesley.ISBN 9780201657029.
  7. ^Cushman, R.H.; Bates, L.M. (1997), "The Lagrange top",Global Aspects of Classical Integrable Systems, Basel: Birkhäuser, pp. 187–270,doi:10.1007/978-3-0348-8891-2_5,ISBN 978-3-0348-9817-1.
  8. ^Goryachev, D. (1900). "On the motion of a rigid material body about a fixed point in the case A = B = C",Mat. Sb., 21.(in Russian). Cited in Bechlivanidis & van Moerbek (1987) and Hazewinkel (2012).
  9. ^Chaplygin, S.A. (1948). "A new case of rotation of a rigid body, supported at one point",Collected Works, Vol. I, pp. 118–124. Moscow: Gostekhizdat.(in Russian). Cited in Bechlivanidis & van Moerbek (1987) and Hazewinkel (2012).
  10. ^Bechlivanidis, C.; van Moerbek, P. (1987),"The Goryachev–Chaplygin Top and the Toda Lattice",Communications in Mathematical Physics,110 (2):317–324,Bibcode:1987CMaPh.110..317B,doi:10.1007/BF01207371,S2CID 119927045
  11. ^Hazewinkel, Michiel; ed. (2012).Encyclopaedia of Mathematics, pp. 271–2. Springer.ISBN 9789401512886.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Lagrange,_Euler,_and_Kovalevskaya_tops&oldid=1236804097#Euler_top"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp