Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Euler–Maruyama method

From Wikipedia, the free encyclopedia
Method in Itô calculus
This article is about numerical methods in stochastic models (stochastic differential equations). For the same problem but for deterministic models seeEuler method andOrdinary differential equation.

InItô calculus, theEuler–Maruyama method (also simply called theEuler method) is a method for the approximatenumerical solution of astochastic differential equation (SDE). It is an extension of theEuler method forordinary differential equations to stochastic differential equations named afterLeonhard Euler andGisiro Maruyama. The same generalization cannot be done for any arbitrary deterministic method.[1]

Definition

[edit]

Consider the stochastic differential equation (seeItô calculus)

dXt=a(Xt,t)dt+b(Xt,t)dWt,{\displaystyle \mathrm {d} X_{t}=a(X_{t},t)\,\mathrm {d} t+b(X_{t},t)\,\mathrm {d} W_{t},}

withinitial conditionX0 = x0, whereWt denotes theWiener process, and suppose that we wish to solve this SDE on some interval of time [0, T]. Then theEuler–Maruyama approximation to the true solutionX is theMarkov chainY defined as follows:

0=τ0<τ1<<τN=T and Δt=T/N;{\displaystyle 0=\tau _{0}<\tau _{1}<\cdots <\tau _{N}=T{\text{ and }}\Delta t=T/N;}
  • SetY0 = x0
  • Recursively defineYn for 0 ≤ n ≤ N-1 by
Yn+1=Yn+a(Yn,τn)Δt+b(Yn,τn)ΔWn,{\displaystyle \,Y_{n+1}=Y_{n}+a(Y_{n},\tau _{n})\,\Delta t+b(Y_{n},\tau _{n})\,\Delta W_{n},}
where
ΔWn=Wτn+1Wτn.{\displaystyle \Delta W_{n}=W_{\tau _{n+1}}-W_{\tau _{n}}.}

Therandom variables ΔWn areindependent and identically distributednormal random variables withexpected value zero andvariance Δt.

Derivation

[edit]

The Euler-Maruyama formula can be derived by considering the integral form of the Itô SDE

Xτn+1=Xτn+τnτn+1a(Xs,s)ds+τnτn+1b(Xs,s)dWs{\displaystyle X_{\tau _{n+1}}=X_{\tau _{n}}+\int _{\tau _{n}}^{\tau _{n+1}}a(X_{s},s)\,ds+\int _{\tau _{n}}^{\tau _{n+1}}b(X_{s},s)\,dW_{s}}

and approximatinga(Xs,s)a(Xn,τn){\displaystyle a(X_{s},s)\approx a(X_{n},\tau _{n})} andb(Xs,s)b(Xn,τn){\displaystyle b(X_{s},s)\approx b(X_{n},\tau _{n})} on the small time interval[τn,τn+1]{\displaystyle [\tau _{n},\tau _{n+1}]}.

Strong and weak convergence

[edit]

Like other approximation methods, the accuracy of the Euler–Maruyama scheme is analyzed through comparison to an underlying continuous solution.LetX{\displaystyle X} denote an Itô process over[0,T]{\displaystyle [0,T]}, equal to

Xt=X0+0tμ(s,Xs)ds+0tσ(s,Xs)dWs{\displaystyle X_{t}=X_{0}+\int _{0}^{t}\mu (s,X_{s})ds+\int _{0}^{t}\sigma (s,X_{s})dW_{s}}

at timet[0,T]{\displaystyle t\in [0,T]}, whereμ{\displaystyle \mu } andσ{\displaystyle \sigma } denote deterministic "drift" and "diffusion" functions, respectively, andWt{\displaystyle W_{t}} is theWiener process.As discrete approximations of continuous processes are typically assessed through comparison between their respective final states atT>0{\displaystyle T>0}, a natural convergence criterion for such discrete processes is

limNE[|X^NXT|]=0.{\displaystyle \lim _{N\to \infty }\mathbb {E} \left[\left|{\hat {X}}_{N}-X_{T}\right|\right]=0.}

Here,X^N{\displaystyle {\hat {X}}_{N}} corresponds to the final state of the discrete processX^{\displaystyle {\hat {X}}}, which approximatesXT{\displaystyle X_{T}} by takingN{\displaystyle N} steps of lengthΔt=T/N{\displaystyle \Delta t=T/N}.[2]Iterative schemes satisfying the above condition are said to strongly converge to the continuous processX{\displaystyle X}, which automatically implies their satisfaction of the weak convergence criterion,

limNE[|g(X^N)g(XT)|]=0,{\displaystyle \lim _{N\to \infty }\mathbb {E} \left[\left|g({\hat {X}}_{N})-g(X_{T})\right|\right]=0,}

for any smooth functiong{\displaystyle g}.[3]More specifically, if there exists a constantK{\displaystyle K} andγs,δ0>0{\displaystyle \gamma _{s},\delta _{0}>0} such that

E[|X^NXT|]Kδ0γs{\displaystyle \mathbb {E} \left[\left|{\hat {X}}_{N}-X_{T}\right|\right]\leq K\delta _{0}^{\gamma _{s}}}

for anyδ(0,δ0){\displaystyle \delta \in (0,\delta _{0})}, the approximation converges strongly with orderγs{\displaystyle \gamma _{s}} to the continuous processX{\displaystyle X}; likewise,X^{\displaystyle {\hat {X}}} converges weakly toX{\displaystyle X} with orderγw{\displaystyle \gamma _{w}} if the same inequality holds withg(X^N)g(XT){\displaystyle g({\hat {X}}_{N})-g(X_{T})} in place ofX^NXT{\displaystyle {\hat {X}}_{N}-X_{T}}.Strong orderγs{\displaystyle \gamma _{s}} convergence implies weak orderγwγs{\displaystyle \gamma _{w}\geq \gamma _{s}} convergence:exemplifying this, it was shown in 1972[4]that the Euler–Maruyama method strongly converges with orderγs=1/2{\displaystyle \gamma _{s}=1/2} to any Itô process, providedμ,σ{\displaystyle \mu ,\sigma } satisfy Lipschitz continuity and linear growth conditions with respect tox{\displaystyle x}, and in 1974, the Euler–Maruyama scheme was proven to converge weakly with orderγw=1{\displaystyle \gamma _{w}=1} to Itô processes governed by the same suchμ,σ{\displaystyle \mu ,\sigma },[5]provided that their derivatives also satisfy similar conditions.[6]

Example with geometric Brownian motion

[edit]
Simulation of geometric Brownian motion. Solid lines show an analytic solution, dashed lines show the Euler-Maruyama method.
Strong error convergence plot for Euler-Maruyama.
Weak error convergence plot for Euler-Maruyama.

A simple case to analyze isgeometric Brownian motion, which satisfies the SDE

dXt=λXtdt+σXtdWt{\displaystyle dX_{t}=\lambda X_{t}\,dt+\sigma X_{t}\,dW_{t}}

for fixedλ{\displaystyle \lambda } andσ{\displaystyle \sigma }. ApplyingItô’s lemma tolnXt{\displaystyle \ln X_{t}} yields the closed-form solution

Xt=X0exp((λ12σ2)t+σWt){\displaystyle X_{t}=X_{0}\exp \left(\left(\lambda -{\tfrac {1}{2}}\sigma ^{2}\right)t+\sigma W_{t}\right)}

Discretising with Euler–Maruyama gives the time-step updates

Yn+1=(1+λΔt+σΔWn)Yn=Y0k=0n(1+λΔt+σΔWk){\displaystyle Y_{n+1}=\left(1+\lambda \Delta t+\sigma \Delta W_{n}\right)Y_{n}=Y_{0}\prod _{k=0}^{n}\left(1+\lambda \Delta t+\sigma \Delta W_{k}\right)}

By using aTaylor series expansion of the exponential function in the analytic solution, we can get a formula for the exact update in a time-step.

Xτk+1=Xτkexp((λ12σ2)Δt+σΔWk)=Xτk[1+λΔt+σΔWk+12σ2((ΔWk)2Δt)+O(Δt3/2)]{\displaystyle {\begin{aligned}X_{\tau _{k+1}}&=X_{\tau _{k}}\exp \left((\lambda -{\tfrac {1}{2}}\sigma ^{2})\Delta t+\sigma \Delta W_{k}\right)\\&=X_{\tau _{k}}\left[1+\lambda \Delta t+\sigma \Delta W_{k}+{\tfrac {1}{2}}\sigma ^{2}\left((\Delta W_{k})^{2}-\Delta t\right)+O\left(\Delta t^{3/2}\right)\right]\\\end{aligned}}}

Summing the local errors between the analytic and Euler-Maruyama solutions over each of theN=T/Δt{\displaystyle N=T/\Delta t} steps gives the strong error estimate

E[|XTYN|]=O(Δt){\displaystyle \mathbb {E} \left[\,|X_{T}-Y_{N}|\,\right]=O\left({\sqrt {\Delta t}}\right)}

confirming strong order1/2{\displaystyle 1/2} convergence.

Another numerical aspect to consider is stability. The path's second moment isE|Xt|2exp((2λ+σ2)t){\displaystyle \mathbb {E} |X_{t}|^{2}\propto \exp \left((2\lambda +\sigma ^{2})t\right)}, so long-time decay of the solution occurs only when2λ+σ2<0{\displaystyle 2\lambda +\sigma ^{2}<0}. The Euler–Maruyama scheme preserves variance decay in this case provided thatΔt1λ2(2λ+σ2){\displaystyle \Delta t\leq {\frac {-1}{\lambda ^{2}}}\left(2\lambda +\sigma ^{2}\right)}.

Application

[edit]
Gene expression modelled as a stochastic process.

An area that has benefited significantly from SDEs ismathematical biology. As many biological processes are both stochastic and continuous in nature, numerical methods of solving SDEs are highly valuable in the field.

References

[edit]
  1. ^Kloeden, P.E. & Platen, E. (1992).Numerical Solution of Stochastic Differential Equations. Springer, Berlin.ISBN 3-540-54062-8.
  2. ^Higham, Desmond J. (2001). "An Algorithmic Introduction to Numerical Simulation of Stochastic Differential Equations".SIAM Review.43 (3). Philadelphia, PA: Society for Industrial and Applied Mathematics:525–546.ISSN 0036-1445.
  3. ^Kloeden, P.E. & Platen, E. (1992).Numerical Solution of Stochastic Differential Equations. Springer, Berlin.ISBN 3-540-54062-8.
  4. ^Gikhman, Iosif I.; Skorokhod, Anatoli V.; Kotz, S. (2007).The Theory of Stochastic Processes III. Classics in Mathematics (1 ed.). Berlin, Heidelberg: Springer Berlin / Heidelberg.ISBN 9783540499404.
  5. ^Mil’shtein, G. N. (1979). "A Method of Second-Order Accuracy Integration of Stochastic Differential Equations".Theory of Probability and Its Applications.23 (2). Philadelphia: Society for Industrial and Applied Mathematics:396–401.ISSN 0040-585X.
  6. ^Mil’shtejn, G. N. (1975). "Approximate Integration of Stochastic Differential Equations".Theory of Probability and Its Applications.19 (3). Philadelphia: Society for Industrial and Applied Mathematics:557–562.ISSN 0040-585X.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Euler–Maruyama_method&oldid=1289498769"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp