Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Euler's sum of powers conjecture

From Wikipedia, the free encyclopedia
Disproved conjecture in number theory

Innumber theory,Euler's conjecture is adisprovedconjecture related toFermat's Last Theorem. It was proposed byLeonhard Euler in 1769. It states that for allintegersn andk greater than 1, if the sum ofn manykth powers of positive integers is itself akth power, thenn is greater than or equal tok:

a1k+a2k++ank=bknk{\displaystyle a_{1}^{k}+a_{2}^{k}+\dots +a_{n}^{k}=b^{k}\implies n\geq k}

The conjecture represents an attempt to generalize Fermat's Last Theorem, which is the special casen = 2: ifa1k+a2k=bk,{\displaystyle a_{1}^{k}+a_{2}^{k}=b^{k},} then2 ≥k.

Although the conjecture holds for the casek = 3 (which follows from Fermat's Last Theorem for the third powers), it was disproved fork = 4 andk = 5. It is unknown whether the conjecture fails or holds for any valuek ≥ 6.

Background

[edit]

Euler was aware of the equality594 + 1584 = 1334 + 1344 involving sums of four fourth powers; this, however, is not acounterexample because no term is isolated on one side of the equation. He also provided a complete solution to the four cubes problem as inPlato's number33 + 43 + 53 = 63 or thetaxicab number 1729.[1][2] The general solution of the equationx13+x23=x33+x43{\displaystyle x_{1}^{3}+x_{2}^{3}=x_{3}^{3}+x_{4}^{3}}is

x1=λ(1(a3b)(a2+3b2))x2=λ((a+3b)(a2+3b2)1)x3=λ((a+3b)(a2+3b2)2)x4=λ((a2+3b2)2(a3b)){\displaystyle {\begin{aligned}x_{1}&=\lambda (1-(a-3b)(a^{2}+3b^{2}))\\[2pt]x_{2}&=\lambda ((a+3b)(a^{2}+3b^{2})-1)\\[2pt]x_{3}&=\lambda ((a+3b)-(a^{2}+3b^{2})^{2})\\[2pt]x_{4}&=\lambda ((a^{2}+3b^{2})^{2}-(a-3b))\end{aligned}}}

wherea,b andλ{\displaystyle {\lambda }} are any rational numbers.

Counterexamples

[edit]

Euler's conjecture was disproven byL. J. Lander andT. R. Parkin in 1966 when, through a direct computer search on aCDC 6600, they found a counterexample fork = 5.[3] This was published in a paper comprising just two sentences.[3] A total of three primitive (that is, in which thesummands do not all have acommon factor) counterexamples are known:1445=275+845+1105+1335141325=(220)5+50275+62375+140685853595=555+31835+289695+852825{\displaystyle {\begin{aligned}144^{5}&=27^{5}+84^{5}+110^{5}+133^{5}\\14132^{5}&=(-220)^{5}+5027^{5}+6237^{5}+14068^{5}\\85359^{5}&=55^{5}+3183^{5}+28969^{5}+85282^{5}\end{aligned}}}(Lander & Parkin, 1966); (Scher & Seidl, 1996); (Frye, 2004).

In 1988,Noam Elkies published a method to construct an infinite sequence of counterexamples for thek = 4 case.[4] His smallest counterexample was206156734=26824404+153656394+187967604.{\displaystyle 20615673^{4}=2682440^{4}+15365639^{4}+18796760^{4}.}

A particular case of Elkies' solutions can be reduced to the identity[5][6](85v2+484v313)4+(68v2586v+10)4+(2u)4=(357v2204v+363)4,{\displaystyle (85v^{2}+484v-313)^{4}+(68v^{2}-586v+10)^{4}+(2u)^{4}=(357v^{2}-204v+363)^{4},}whereu2=22030+28849v56158v2+36941v331790v4.{\displaystyle u^{2}=22030+28849v-56158v^{2}+36941v^{3}-31790v^{4}.}This is anelliptic curve with arational point atv1 = −31/467. From this initial rational point, one can compute an infinite collection of others. Substitutingv1 into the identity and removing common factors gives the numerical example cited above.

In 1988,Roger Frye found the smallest possible counterexample958004+2175194+4145604=4224814{\displaystyle 95800^{4}+217519^{4}+414560^{4}=422481^{4}}fork = 4 by a direct computer search using techniques suggested by Elkies. This solution is the only one with values of the variables below 1,000,000.[7]

Generalizations

[edit]
One interpretation of Plato's number,33 + 43 + 53 = 63
Main article:Lander, Parkin, and Selfridge conjecture

In 1967, L. J. Lander, T. R. Parkin, andJohn Selfridge conjectured[8] that if

i=1naik=j=1mbjk{\displaystyle \sum _{i=1}^{n}a_{i}^{k}=\sum _{j=1}^{m}b_{j}^{k}},

whereaibj are positive integers for all1 ≤in and1 ≤jm, thenm +nk. In the special casem = 1, the conjecture states that if

i=1naik=bk{\displaystyle \sum _{i=1}^{n}a_{i}^{k}=b^{k}}

(under the conditions given above) thennk − 1.

The special case may be described as the problem of giving apartition of a perfect power into few like powers. Fork = 4, 5, 7, 8 andn =k ork − 1, there are many known solutions. Some of these are listed below.

SeeOEISA347773 for more data.

k = 3

[edit]

33+43+53=63{\displaystyle 3^{3}+4^{3}+5^{3}=6^{3}} (Plato's number 216)This is the casea = 1,b = 0 ofSrinivasa Ramanujan's formula[9](3a2+5ab5b2)3+(4a24ab+6b2)3+(5a25ab3b2)3=(6a24ab+4b2)3{\displaystyle (3a^{2}+5ab-5b^{2})^{3}+(4a^{2}-4ab+6b^{2})^{3}+(5a^{2}-5ab-3b^{2})^{3}=(6a^{2}-4ab+4b^{2})^{3}}

A cube as the sum of three cubes can also be parameterized in one of two ways:[9]a3(a3+b3)3=b3(a3+b3)3+a3(a32b3)3+b3(2a3b3)3a3(a3+2b3)3=a3(a3b3)3+b3(a3b3)3+b3(2a3+b3)3.{\displaystyle {\begin{aligned}a^{3}(a^{3}+b^{3})^{3}&=b^{3}(a^{3}+b^{3})^{3}+a^{3}(a^{3}-2b^{3})^{3}+b^{3}(2a^{3}-b^{3})^{3}\\[6pt]a^{3}(a^{3}+2b^{3})^{3}&=a^{3}(a^{3}-b^{3})^{3}+b^{3}(a^{3}-b^{3})^{3}+b^{3}(2a^{3}+b^{3})^{3}.\end{aligned}}}The number 2,100,0003 can be expressed as the sum of three positive cubes in nine different ways.[9]

k = 4

[edit]

4224814=958004+2175194+41456043534=304+1204+2724+3154{\displaystyle {\begin{aligned}422481^{4}&=95800^{4}+217519^{4}+414560^{4}\\[4pt]353^{4}&=30^{4}+120^{4}+272^{4}+315^{4}\end{aligned}}}(R. Frye, 1988);[4] (R. Norrie, smallest, 1911).[8]

k = 5

[edit]

1445=275+845+1105+1335725=195+435+465+475+675945=215+235+375+795+8451075=75+435+575+805+1005{\displaystyle {\begin{aligned}144^{5}&=27^{5}+84^{5}+110^{5}+133^{5}\\[2pt]72^{5}&=19^{5}+43^{5}+46^{5}+47^{5}+67^{5}\\[2pt]94^{5}&=21^{5}+23^{5}+37^{5}+79^{5}+84^{5}\\[2pt]107^{5}&=7^{5}+43^{5}+57^{5}+80^{5}+100^{5}\end{aligned}}}

(Lander & Parkin, 1966);[10][11][12] (Lander, Parkin, Selfridge, smallest, 1967);[8] (Lander, Parkin, Selfridge, second smallest, 1967);[8] (Sastry, 1934, third smallest).[8]

k = 6

[edit]

It has been known since 2002 that there are no solutions fork = 6 whose final term is ≤ 730000.[13]

k = 7

[edit]

5687=1277+2587+2667+4137+4307+4397+5257{\displaystyle 568^{7}=127^{7}+258^{7}+266^{7}+413^{7}+430^{7}+439^{7}+525^{7}}

(M. Dodrill, 1999).[14]

k = 8

[edit]

14098=908+2238+4788+5248+7488+10888+11908+13248{\displaystyle 1409^{8}=90^{8}+223^{8}+478^{8}+524^{8}+748^{8}+1088^{8}+1190^{8}+1324^{8}}

(S. Chase, 2000).[15]

See also

[edit]

References

[edit]
  1. ^Dunham, William, ed. (2007).The Genius of Euler: Reflections on His Life and Work. The MAA. p. 220.ISBN 978-0-88385-558-4.
  2. ^Titus, III, Piezas (2005)."Euler's Extended Conjecture".
  3. ^abLander, L. J.; Parkin, T. R. (1966)."Counterexample to Euler's conjecture on sums of like powers".Bull. Amer. Math. Soc.72 (6): 1079.doi:10.1090/S0002-9904-1966-11654-3.
  4. ^abElkies, Noam (1988)."OnA4 +B4 +C4 =D4"(PDF).Mathematics of Computation.51 (184):825–835.doi:10.1090/S0025-5718-1988-0930224-9.JSTOR 2008781.MR 0930224.
  5. ^"Elkies'a4+b4+c4 =d4".
  6. ^Piezas III, Tito (2010)."Sums of Three Fourth Powers (Part 1)".A Collection of Algebraic Identities. RetrievedApril 11, 2022.
  7. ^Frye, Roger E. (1988), "Finding 958004 + 2175194 + 4145604 = 4224814 on the Connection Machine",Proceedings of Supercomputing 88, Vol.II: Science and Applications, pp. 106–116,doi:10.1109/SUPERC.1988.74138,S2CID 58501120
  8. ^abcdeLander, L. J.; Parkin, T. R.; Selfridge, J. L. (1967)."A Survey of Equal Sums of Like Powers".Mathematics of Computation.21 (99):446–459.doi:10.1090/S0025-5718-1967-0222008-0.JSTOR 2003249.
  9. ^abc"MathWorld : Diophantine Equation--3rd Powers".
  10. ^Burkard Polster (March 24, 2018)."Euler's and Fermat's last theorems, the Simpsons and CDC6600".YouTube (video).Archived from the original on 2021-12-11. Retrieved2018-03-24.
  11. ^"MathWorld: Diophantine Equation--5th Powers".
  12. ^"A Table of Fifth Powers equal to Sums of Five Fifth Powers".
  13. ^Giovanni Resta and Jean-Charles Meyrignac (2002).The Smallest Solutions to the Diophantine Equationa6+b6+c6+d6+e6=x6+y6{\displaystyle a^{6}+b^{6}+c^{6}+d^{6}+e^{6}=x^{6}+y^{6}}, Mathematics of Computation, v. 72, p. 1054 (Seefurther work section).
  14. ^"MathWorld: Diophantine Equation--7th Powers".
  15. ^"MathWorld: Diophantine Equation--8th Powers".

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Euler%27s_sum_of_powers_conjecture&oldid=1303252978"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp