Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Essential infimum and essential supremum

From Wikipedia, the free encyclopedia
Infimum and supremum almost everywhere

Inmathematics, the concepts ofessential infimum andessential supremum are related to the notions ofinfimum and supremum, but adapted tomeasure theory andfunctional analysis, where one often deals with statements that are not valid forall elements in aset, but ratheralmost everywhere, that is, except on aset of measure zero.

While the exact definition is not immediately straightforward, intuitively the essential supremum of a function is the smallest value that is greater than or equal to the function values everywhere while ignoring what the function does at a set of points of measure zero. For example, if one takes the functionf(x){\displaystyle f(x)} that is equal to zero everywhere except atx=0{\displaystyle x=0} wheref(0)=1,{\displaystyle f(0)=1,} then the supremum of the function equals one. However, its essential supremum is zero since (under theLebesgue measure) one can ignore what the function does at the single point wheref{\displaystyle f} is peculiar. The essential infimum is defined in a similar way.

Definition

[edit]

As is often the case in measure-theoretic questions, the definition of essential supremum and infimum does not start by asking what a functionf{\displaystyle f} does at pointsx{\displaystyle x} (that is, theimage off{\displaystyle f}), but rather by asking for the set of pointsx{\displaystyle x} wheref{\displaystyle f} equals a specific valuey{\displaystyle y} (that is, thepreimage ofy{\displaystyle y} underf{\displaystyle f}).

Letf:XR{\displaystyle f:X\to \mathbb {R} } be areal valuedfunction defined on a setX.{\displaystyle X.} Thesupremum of a functionf{\displaystyle f} is characterized by the following property:f(x)supf{\displaystyle f(x)\leq \sup f\leq \infty } forallxX{\displaystyle x\in X} and if for someaR{+}{\displaystyle a\in \mathbb {R} \cup \{+\infty \}} we havef(x)a{\displaystyle f(x)\leq a} forallxX{\displaystyle x\in X} thensupfa.{\displaystyle \sup f\leq a.} More concretely, a real numbera{\displaystyle a} is called anupper bound forf{\displaystyle f} iff(x)a{\displaystyle f(x)\leq a} for allxX;{\displaystyle x\in X;} that is, if the setf1(a,)={xX:f(x)>a}{\displaystyle f^{-1}(a,\infty )=\{x\in X:f(x)>a\}}isempty. LetUf={aR:f1(a,)=}{\displaystyle U_{f}=\{a\in \mathbb {R} :f^{-1}(a,\infty )=\varnothing \}\,}be the set of upper bounds off{\displaystyle f} and define theinfimum of the empty set byinf=+.{\displaystyle \inf \varnothing =+\infty .} Then the supremum off{\displaystyle f} issupf=infUf.{\displaystyle \sup f=\inf U_{f}.}By definition, if the set of upper boundsUf{\displaystyle U_{f}} is empty, we havesupf=+{\displaystyle \sup f=+\infty }.

Now assume in addition that(X,Σ,μ){\displaystyle (X,\Sigma ,\mu )} is ameasure space and, for simplicity, assume that the functionf{\displaystyle f} ismeasurable. Similar to the supremum, the essential supremum of a function is characterised by the following property:f(x)esssupf{\displaystyle f(x)\leq \operatorname {ess} \sup f\leq \infty } forμ{\displaystyle \mu }-almost allxX{\displaystyle x\in X} and if for someaR{+}{\displaystyle a\in \mathbb {R} \cup \{+\infty \}} we havef(x)a{\displaystyle f(x)\leq a} forμ{\displaystyle \mu }-almost allxX{\displaystyle x\in X} thenesssupfa.{\displaystyle \operatorname {ess} \sup f\leq a.} More concretely, a numbera{\displaystyle a} is called anessential upper bound off{\displaystyle f} if the measurable setf1(a,){\displaystyle f^{-1}(a,\infty )} is a set ofμ{\displaystyle \mu }-measure zero,[a] That is, iff(x)a{\displaystyle f(x)\leq a} forμ{\displaystyle \mu }-almost allx{\displaystyle x} inX.{\displaystyle X.} LetUfess={aR:μ(f1(a,))=0}{\displaystyle U_{f}^{\operatorname {ess} }=\{a\in \mathbb {R} :\mu (f^{-1}(a,\infty ))=0\}}be the set of essential upper bounds. Then theessential supremum is defined similarly asesssupf=infUfess{\displaystyle \operatorname {ess} \sup f=\inf U_{f}^{\mathrm {ess} }}ifUfess,{\displaystyle U_{f}^{\operatorname {ess} }\neq \varnothing ,} andesssupf=+{\displaystyle \operatorname {ess} \sup f=+\infty } otherwise.

Exactly in the same way one defines theessential infimum as the supremum of theessential lower bounds, that is,essinff=sup{bR:μ({x:f(x)<b})=0}{\displaystyle \operatorname {ess} \inf f=\sup\{b\in \mathbb {R} :\mu (\{x:f(x)<b\})=0\}}if the set of essential lower bounds is nonempty, and as{\displaystyle -\infty } otherwise; again there is an alternative expression asessinff=sup{aR:f(x)a for almost all xX}{\displaystyle \operatorname {ess} \inf f=\sup\{a\in \mathbb {R} :f(x)\geq a{\text{ for almost all }}x\in X\}} (with this being{\displaystyle -\infty } if the set is empty).

Examples

[edit]

On the real line consider theLebesgue measure and its corresponding𝜎-algebraΣ.{\displaystyle \Sigma .} Define a functionf{\displaystyle f} by the formulaf(x)={5,if x=14,if x=12,otherwise.{\displaystyle f(x)={\begin{cases}5,&{\text{if }}x=1\\-4,&{\text{if }}x=-1\\2,&{\text{otherwise.}}\end{cases}}}

The supremum of this function (largest value) is 5, and the infimum (smallest value) is −4. However, the function takes these values only on the sets{1}{\displaystyle \{1\}} and{1},{\displaystyle \{-1\},} respectively, which are of measure zero. Everywhere else, the function takes the value 2. Thus, the essential supremum and the essential infimum of this function are both 2.

As another example, consider the functionf(x)={x3,if xQarctanx,if xRQ{\displaystyle f(x)={\begin{cases}x^{3},&{\text{if }}x\in \mathbb {Q} \\\arctan x,&{\text{if }}x\in \mathbb {R} \smallsetminus \mathbb {Q} \\\end{cases}}}whereQ{\displaystyle \mathbb {Q} } denotes therational numbers. This function is unbounded both from above and from below, so its supremum and infimum are{\displaystyle \infty } and,{\displaystyle -\infty ,} respectively. However, from the point of view of the Lebesgue measure, the set of rational numbers is of measure zero; thus, what really matters is what happens in the complement of this set, where the function is given asarctanx.{\displaystyle \arctan x.} It follows that the essential supremum isπ/2{\displaystyle \pi /2} while the essential infimum isπ/2.{\displaystyle -\pi /2.}

On the other hand, consider the functionf(x)=x3{\displaystyle f(x)=x^{3}} defined for all realx.{\displaystyle x.} Its essential supremum is+,{\displaystyle +\infty ,} and its essential infimum is.{\displaystyle -\infty .}

Lastly, consider the functionf(x)={1/x,if x00,if x=0.{\displaystyle f(x)={\begin{cases}1/x,&{\text{if }}x\neq 0\\0,&{\text{if }}x=0.\\\end{cases}}}Then for anyaR,{\displaystyle a\in \mathbb {R} ,}μ({xR:1/x>a})1|a|{\displaystyle \mu (\{x\in \mathbb {R} :1/x>a\})\geq {\tfrac {1}{|a|}}} and soUfess={\displaystyle U_{f}^{\operatorname {ess} }=\varnothing } andesssupf=+.{\displaystyle \operatorname {ess} \sup f=+\infty .}

Properties

[edit]

Ifμ(X)>0{\displaystyle \mu (X)>0} theninff  essinff  esssupf  supf.{\displaystyle \inf f~\leq ~\operatorname {ess} \inf f~\leq ~\operatorname {ess} \sup f~\leq ~\sup f.} and otherwise, ifX{\displaystyle X} has measure zero then[1]+ = essinff  esssupf = .{\displaystyle +\infty ~=~\operatorname {ess} \inf f~\geq ~\operatorname {ess} \sup f~=~-\infty .}

Iff{\displaystyle f} andg{\displaystyle g} are measurable, then

esssup(f+g)esssupf+esssupg{\displaystyle \operatorname {ess\,sup} (f+g)\leq \operatorname {ess\,sup} f+\operatorname {ess\,sup} g}

and

essinf(f+g)essinff+essinfg.{\displaystyle \operatorname {ess\,inf} (f+g)\geq \operatorname {ess\,inf} f+\operatorname {ess\,inf} g.}

Iff{\displaystyle f} andg{\displaystyle g} are measurable and iffg{\displaystyle f\leq g} almost everywhere, then

esssupfesssupg{\displaystyle \operatorname {ess\,sup} f\leq \operatorname {ess\,sup} g}

and

essinffessinfg.{\displaystyle \operatorname {ess\,inf} f\leq \operatorname {ess\,inf} g.}

If the essential supremums of two functionsf{\displaystyle f} andg{\displaystyle g} are both nonnegative, thenesssup(fg)  (esssupf)(esssupg).{\displaystyle \operatorname {ess} \sup(fg)~\leq ~(\operatorname {ess} \sup f)\,(\operatorname {ess} \sup g).}

The essential supremum of a function is not just the infimum of the essential lower bounds, but also their minimum. A similar result holds for the essential infimum.

Given ameasure space(S,Σ,μ),{\displaystyle (S,\Sigma ,\mu ),} thespaceL(S,μ){\displaystyle {\mathcal {L}}^{\infty }(S,\mu )} consisting of all of measurable functions that are bounded almost everywhere is aseminormed space whoseseminormf=inf{CR0:|f(x)|C for almost every x}={esssup|f| if 0<μ(S),0 if 0=μ(S),{\displaystyle \|f\|_{\infty }=\inf\{C\in \mathbb {R} _{\geq 0}:|f(x)|\leq C{\text{ for almost every }}x\}={\begin{cases}\operatorname {ess} \sup |f|&{\text{ if }}0<\mu (S),\\0&{\text{ if }}0=\mu (S),\end{cases}}}is the essential supremum of a function's absolute value whenμ(S)0.{\displaystyle \mu (S)\neq 0.}[b]

See also

[edit]

Notes

[edit]
  1. ^For nonmeasurable functions the definition has to be modified by assuming thatf1(a,){\displaystyle f^{-1}(a,\infty )} is contained in a set of measure zero. Alternatively, one can assume that the measure iscomplete.
  2. ^Ifμ(S)=0{\displaystyle \mu (S)=0} thenesssup|f|=.{\displaystyle \operatorname {ess} \sup |f|=-\infty .}

References

[edit]
  1. ^Dieudonné J.: Treatise On Analysis, Vol. II. Associated Press, New York 1976. p 172f.

This article incorporates material fromEssential supremum onPlanetMath, which is licensed under theCreative Commons Attribution/Share-Alike License.

Basic concepts
L1 spaces
L2 spaces
L{\displaystyle L^{\infty }} spaces
Maps
Inequalities
Results
ForLebesgue measure
Applications & related
Basic concepts
Sets
Types ofmeasures
Particular measures
Maps
Main results
Other results
ForLebesgue measure
Applications & related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Essential_infimum_and_essential_supremum&oldid=1314688528"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp