Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Atenolol

From Wikipedia, the free encyclopedia
(Redirected fromEsatenolol)
Beta blocker medication

Pharmaceutical compound
Atenolol
Clinical data
Trade namesTenormin, others
Other namesICI-66082; ICI66082
AHFS/Drugs.comMonograph
MedlinePlusa684031
License data
Pregnancy
category
Routes of
administration
Oral,intravenous
Drug classBeta blocker;β-Adrenergic receptor antagonist;Selectiveβ1-adrenergic receptorantagonist;Sympatholytic agent;Antihypertensive agent;Anxiolytic
ATC code
Legal status
Legal status
Pharmacokinetic data
Bioavailability50–60%[1][2]
Protein binding6–16%[3]
MetabolismMinimal (~5%)[3][4][5]
Metabolites• Hydroxyatenolol[2]
• Atenolol glucuronide[2]
Onset of actionIVTooltip Intravenous injection: <5 minutes[3]
Oral: <1 hour[3]
Eliminationhalf-life6–7 hours[3]
Duration of action>24 hours[3]
ExcretionOral:urine (40–50%),feces (50%)[2][3]
IVTooltip Intravenous injection: urine (85–100%), feces (10%)[2][3]
Identifiers
  • (RS)-2-{4-[2-Hydroxy-3-(propan-2-ylamino)propoxy]phenyl}acetamide
CAS Number
PubChemCID
IUPHAR/BPS
DrugBank
ChemSpider
UNII
KEGG
ChEBI
ChEMBL
CompTox Dashboard(EPA)
ECHA InfoCard100.044.941Edit this at Wikidata
Chemical and physical data
FormulaC14H22N2O3
Molar mass266.341 g·mol−1
3D model (JSmol)
ChiralityRacemic mixture
  • O=C(N)Cc1ccc(cc1)OCC(O)CNC(C)C
  • InChI=1S/C14H22N2O3/c1-10(2)16-8-12(17)9-19-13-5-3-11(4-6-13)7-14(15)18/h3-6,10,12,16-17H,7-9H2,1-2H3,(H2,15,18)
  • Key:METKIMKYRPQLGS-UHFFFAOYSA-N

Atenolol is abeta blocker medication primarily used to treathigh blood pressure andheart-associated chest pain.[6] Although used to treat high blood pressure, it does not seem to improvemortality in those with the condition.[7][8] Other uses include the prevention ofmigraines and treatment of certainirregular heart beats.[6][9] It is takenorally (by mouth) or byintravenous injection (injection into a vein).[6][9] It can also be used with otherblood pressure medications.[9]

Commonside effects includefeeling tired,heart failure,dizziness,depression, andshortness of breath.[6] Other serious side effects includebronchial spasm.[6] Use is not recommended duringpregnancy[6] and alternative drugs are preferred whenbreastfeeding.[10] It works by blockingβ1-adrenergic receptors in theheart, thus decreasingheart rate,force of heart beats, andblood pressure.[6]

Atenolol was patented in 1969 and approved for medical use in 1975.[11] It is on theWorld Health Organization's List of Essential Medicines.[12] It is available as ageneric medication.[6] In 2023, it was the 75th most commonly prescribed medication in the United States, with more than 9 million prescriptions.[13][14]

Medical uses

[edit]

Atenolol is used for a number of conditions includinghyperthyroidism,[15]hypertension,angina,long QT syndrome,acute myocardial infarction,supraventricular tachycardia,ventricular tachycardia,essential tremor (ET), and the symptoms ofalcohol withdrawal.[16]

The role for β-blockers in general in hypertension was downgraded in June 2006 in the United Kingdom, and later in the United States, as they are less appropriate than other agents such asACE inhibitors,calcium channel blockers,thiazide diuretics andangiotensin receptor blockers, particularly in the elderly.[17][18][19]

Atenolol has been used to treatanxiety disorders, such asgeneralized anxiety disorder andsocial anxiety disorder.[20][21][22] It is thought that beta blockers do not directly treat psychological symptoms ofanxiety, but can help control physical symptoms such aspalpitations, and this may interfere with a positive feedback loop to indirectly reduce psychological anxiety.[20] A 2025systematic review andmeta-analysis that included atenolol found widespread prescription of beta blockers for treatment anxiety disorders, but found no evidence of a beneficial effect relative to placebo orbenzodiazepines in people with social phobia orpanic disorder.[20] However, thequality of evidence, including both numbers of studies and patients as well as quality and risk ofbias of those studies, was limited.[20]

Contraindications

[edit]

Contraindications of atenolol includesinus bradycardia,heart block greater than first degree,cardiogenic shock, and overtheart failure.[23] There is no basis for use of atenolol in people withheart rate of lower than 50 bpm orsystolic blood pressure of less than 100 mm Hg and hence these can be considered contraindications.[23] It is also contraindicated in people with a history ofhypersensitivity to atenolol or any of the drug product's other components.[23]

Side effects

[edit]
See also:Beta blocker

Hypertension treated with a β-blocker such as atenolol, alone or in conjunction with a thiazide diuretic, is associated with a higher incidence of new onset type 2 diabetes mellitus compared to those treated with an ACE inhibitor or angiotensin receptor blocker.[24][25]

β-blockers, of which atenolol is mainly studied, provides weaker protection againststroke and mortality in patients over 60 years old compared to other antihypertensive medications.[26][27][28][17]Diuretics may be associated with better cardiovascular and cerebrovascular outcomes than β-blockers in the elderly.[29]

Rarely, atenolol has been associated with induction of acutedelirium.[30][1][31]

Overdose

[edit]

Symptoms ofoverdose are due to excessive pharmacodynamic actions on β1 and also β2-receptors. These includebradycardia (slow heartbeat), severehypotension withshock, acuteheart failure,hypoglycemia and bronchospastic reactions. Treatment is largely symptomatic. Hospitalization and intensive monitoring is indicated.Activated charcoal is useful to absorb the drug.Atropine will counteract bradycardia,glucagon helps with hypoglycemia,dobutamine can be given against hypotension and the inhalation of a β2-mimetic such ashexoprenalin orsalbutamol will terminate bronchospasms. Blood or plasma atenolol concentrations may be measured to confirm a diagnosis of poisoning in hospitalized patients or to assist in a medicolegal death investigation. Plasma levels are usually less than 3 mg/L during therapeutic administration, but can range from 3–30 mg/L in overdose victims.[32][33]

Interactions

[edit]

Interactions with atenolol includecatecholamine-depleting drugs likereserpine,calcium channel blockers,disopyramide,amiodarone,clonidine,prostaglandin synthase inhibitors likeindomethacin, anddigitalis glycosides.[23] Most of these interactions involve either additive cardiovascular effects or reduction of atenolol's effects.[23]

Atenolol is mainlyeliminatedrenally without beingmetabolized by theliver or bycytochrome P450enzymes.[23][4][34] As a result, it has little or no potential for cytochrome P450-related drug interactions, for instance withinhibitors andinducers of these enzymes.[4][34] Accordingly, the broad/non-selective cytochrome P450 inhibitorcimetidine had no effect on atenolol levels, whereas cimetidine has been found to significantly increasemetoprolol andpropranolol levels.[4]

Beta blockers like atenolol can reduce or block thecardiovascular effects ofsympathomimetics andamphetamines, such ashypertension andtachycardia.[35][36][37][38][39][40][41]

Atenolol has been found to be safe in combination with thenon-selectivemonoamine oxidase inhibitor (MAOI)phenelzine and actually improvedorthostatic hypotension andhypertensive reactions with phenelzine.[42][43][44] However, more research is still needed to assess whether addition of a beta blocker like atenolol to MAOI therapy is safe and effective for improving orthostatic hypotension with MAOIs.[42][44]

Pharmacology

[edit]

Pharmacodynamics

[edit]
Atenolol activities
SiteKi (nM)Species
5-HT1A10,000Rat
5-HT1B>10,000Rat
5-HT2A>10,000Human
5-HT2C>10,000Pig
α1NDND
α2NDND
β1170–1,500Human
β28,140–9,550Human
β3>10,000Human
D1NDND
D2>10,000Rat
Notes: Values are Ki (nM), unless otherwise noted. The smaller the value, the more avidly the drug binds to the site.Refs:[45][46]

Atenolol is abeta blocker; that is, anantagonist of theβ-adrenergic receptors.[47][3] It is specifically aselective antagonist of theβ1-adrenergic receptor with nointrinsic sympathomimetic activity (i.e.,partial agonist activity) ormembrane-stabilizing activity.[47][3] However, the preferential action of atenolol is not absolute, and at high doses, it can also blockβ2-adrenergic receptors.[3]

Beta-blocking effects of atenolol include reduction inresting andexerciseheart rate andcardiac output, reduction ofsystolic anddiastolic blood pressure at rest and with exercise, inhibition oftachycardia induced byisoproterenol (a non-selective β-adrenergic receptoragonist), and reduction ofreflex orthostatic tachycardia.[3]

The beta-blocking effects of atenolol, as measured by reduction of exercise-related tachycardia, are apparent within 1 hour and are maximal within 2 to 4 hours following a single oral dose.[3] The general effects of atenolol, including beta-blocking andantihypertensive effects, last for at least 24 hours followingoral doses of 50 or 100 mg.[3] With intravenous administration, maximal reduction in exercise-related tachycardia occurs within 5 minutes and following a single 10 mg dose has dissipated within 12 hours.[3] Theduration of action of atenolol is dose-related and is correlated with circulating levels of atenolol.[3]

Pharmacokinetics

[edit]

Absorption

[edit]

Theoralbioavailability of atenolol is approximately 50 to 60%.[1][2] Theabsorption of atenolol with oral administration is rapid and consistent but is incomplete.[3] About 50% of an oral dose of atenolol is absorbed from theintestines, with the restexcreted infeces.[3]Maximal concentrations of atenolol occur 2 to 4 hours following an oral dose, whereas peak concentrations occur within 5 minutes withintravenous administration.[3] Thepharmacokinetic profile of atenolol results in it having relatively consistent plasma drug levels with about 4-fold variation between individuals.[3]

Distribution

[edit]

Theplasma protein binding of atenolol is 6 to 16%.[3]

Atenolol is classified as ahydrophilic beta blocker with lowlipophilicity and hence lower potential for crossing theblood–brain barrier and entering the brain.[47] This in turn may result in fewer effects in thecentral nervous system as well as a lower risk ofneuropsychiatric side effects.[47] Only small amounts of atenolol are said to enter the brain.[1][2] Thebrain-to-blood ratio of atenolol in humans has been found to be 0.2:1, whereas the ratio for the highly lipophilicpropranolol has been found to range from 15:1 to 33:1.[48][2]

Metabolism

[edit]

Atenolol undergoes minimal or negligiblemetabolism by theliver.[3][4] It has been estimated that about 5% of atenolol is metabolized.[5] This is in contrast to other beta blockers likepropranolol andmetoprolol, but is similar tonadolol.[3] In accordance with its lack of hepatic metabolism, the pharmacokinetics of atenolol are not altered inhepatic impairment, unlike the case of propranolol.[4] Twometabolites of atenolol have been identified: hydroxyatenolol and atenolol glucuronide.[1] It has been said that it is unknown if these metabolites are active.[1] However, another source stated that hydroxyatenolol has one-tenth the beta-blocking activity of atenolol.[2]

Elimination

[edit]

Instead of by hepatic metabolism, atenolol iseliminated from the blood mainly viarenalexcretion.[3] Atenolol is excreted about 40 to 50% inurine and 50% infeces with oral administration.[2][3] Conversely, it is excreted 85 to 100% in urine unchanged and 10% in feces with intravenous administration.[2][3] Only very small amounts of hydroxyatenolol and atenolol glucuronide are found in urine with atenolol.[2]

Theelimination half-life of atenolol is about 6 to 7 hours.[3] The half-life of atenolol does not change with continuous administration.[3] With intravenous administration, atenolol levels rapidly decline (5- to 10-fold) during the first 7 hours and thereafter decline at a rate similar to that with oral administration.[3]

The elimination of atenolol is slowed inrenal impairment, with the elimination rate being closely related to theglomerular filtration rate (GFR) and with significant accumulation occurring when thecreatinineclearance rate is under 35 mL/min/1.73 m2.[3] At a GFR of less than 10 mL/min, the half-life of atenolol increases up to 36 hours.[5]

Chemistry

[edit]

Atenolol is asubstituted phenethylaminederivative.[49] It is specificallyβ-phenylethylamine with an α-ketosubstitution and a 4- substitution on thephenyl ring.[49]

The experimentallog P of atenolol is 0.16 and its predicted log P ranges from −0.03 to 0.57.[49][50][51] Atenolol showed the lowest predicted lipophilicity of 30 clinically relevant beta blockers.[52]

History

[edit]

Atenolol waspatented in 1969 and was approved for medical use in 1975.[11]

Society and culture

[edit]

Changing medical practices

[edit]

Atenolol has been given as an example of how slow healthcare providers are to change their prescribing practices in the face ofmedical evidence that indicates that a drug is not as effective as others in treating some conditions.[53] In 2012, 33.8 million prescriptions were written to American patients for this drug.[53] In 2014, it was in the top (most common) 1% of drugs prescribed to Medicare patients.[53] Although the number of prescriptions has been declining steadily since limited evidence articles contesting its efficacy was published, it has been estimated that it would take 20 years for doctors to stop prescribing it for hypertension.[53] Despite its diminished efficacy when compared to newerantihypertensive drugs, atenolol and otherbeta blockers are still a relevant clinical choice for treating some conditions, sincebeta blockers are a diverse group of medicines with different properties that still requires further research.[17] As consequence, reasons for the popularity of beta blockers cannot be fully attributed to a slow healthcare system –patient compliance factor, such as treatment cost and duration, also affect adherence and popularity of therapy.[54]

References

[edit]
  1. ^abcdefWadworth AN, Murdoch D, Brogden RN (September 1991). "Atenolol. A reappraisal of its pharmacological properties and therapeutic use in cardiovascular disorders".Drugs.42 (3):468–510.doi:10.2165/00003495-199142030-00007.PMID 1720383.
  2. ^abcdefghijklHeel RC, Brogden RN, Speight TM, Avery GS (June 1979). "Atenolol: a review of its pharmacological properties and therapeutic efficacy in angina pectoris and hypertension".Drugs.17 (6):425–460.doi:10.2165/00003495-197917060-00001.PMID 38096.
  3. ^abcdefghijklmnopqrstuvwxyzaaabacad"DailyMed - TENORMIN- atenolol tablet".DailyMed. 30 June 2021.Archived from the original on 27 January 2022. Retrieved20 November 2023.
  4. ^abcdefBrodde OE, Kroemer HK (2003). "Drug-drug interactions of beta-adrenoceptor blockers".Arzneimittelforschung.53 (12):814–822.doi:10.1055/s-0031-1299835.PMID 14732961.Atenolol is only minimally, if at all, metabolized and renally excreted in mostly unchanged form; thus an interaction with drugs that interfere with the hepatic metabolism is not to be expected. It is also very unlikely that the genetic polymorphisms of the CYP-family might affect the pharmacokinetics of atenolol. In fact it has been shown that plasma concentrations of nonmetabolized atenolol was not significantly different between "extensive" and "poor debrisoquine metabolizers" – in contrast to the plasma concentrations of metoprolol that were significantly increased in "poor metabolizers" (Dayer et al. 1985, Lewis et al. 1985). Furthermore, in healthy volunteers cimetidine (CAS 70059- 30-2) did not affect plasma concentrations of atenolol but significantly increased plasma concentrations of metoprolol or propranolol (Kirch et al. 1981).
  5. ^abcKirch W, Görg KG (1982). "Clinical pharmacokinetics of atenolol--a review".Eur J Drug Metab Pharmacokinet.7 (2):81–91.doi:10.1007/BF03188723.PMID 6749509.
  6. ^abcdefgh"Atenolol Monograph for Professionals".Drugs.com. AHFS.Archived from the original on 18 April 2019. Retrieved23 December 2018.
  7. ^Tomiyama H, Yamashina A (2014)."Beta-Blockers in the Management of Hypertension and/or Chronic Kidney Disease".International Journal of Hypertension.2014 919256.doi:10.1155/2014/919256.PMC 3941231.PMID 24672712.
  8. ^DiNicolantonio JJ, Fares H, Niazi AK, Chatterjee S, D'Ascenzo F, Cerrato E, et al. (2015)."β-Blockers in hypertension, diabetes, heart failure and acute myocardial infarction: a review of the literature".Open Heart.2 (1) e000230.doi:10.1136/openhrt-2014-000230.PMC 4371808.PMID 25821584.
  9. ^abcBritish national formulary: BNF 76 (76 ed.). Pharmaceutical Press. 2018. pp. 151–153.ISBN 978-0-85711-338-2.
  10. ^"Atenolol use while Breastfeeding".Drugs.com.Archived from the original on 23 December 2018. Retrieved23 December 2018.
  11. ^abFischer J, Ganellin CR (2006).Analogue-based Drug Discovery. John Wiley & Sons. p. 461.ISBN 978-3-527-60749-5.
  12. ^World Health Organization (2021).World Health Organization model list of essential medicines: 22nd list (2021). Geneva: World Health Organization.hdl:10665/345533. WHO/MHP/HPS/EML/2021.02.
  13. ^"Top 300 of 2023".ClinCalc.Archived from the original on 12 August 2025. Retrieved12 August 2025.
  14. ^"Atenolol Drug Usage Statistics, United States, 2013 - 2023".ClinCalc. Retrieved18 August 2025.
  15. ^Rehman B, Sanchez DP, Shah S (2021)."Atenolol".StatPearls. Treasure Island (FL): StatPearls Publishing.PMID 30969666.Archived from the original on 10 October 2022. Retrieved5 September 2021.
  16. ^"Atenolol".The American Society of Health-System Pharmacists.Archived from the original on 18 April 2019. Retrieved8 May 2018.
  17. ^abcWiysonge CS, Bradley HA, Volmink J, Mayosi BM, Opie LH (January 2017)."Beta-blockers for hypertension".The Cochrane Database of Systematic Reviews.1 (1) CD002003.doi:10.1002/14651858.CD002003.pub5.PMC 5369873.PMID 28107561.Further research should be of high quality and should explore whether there are differences between different subtypes of beta-blockers or whether beta-blockers have differential effects on younger and older people [...] Beta-blockers were not as good at preventing the number of deaths, strokes, and heart attacks as other classes of medicines such as diuretics, calcium-channel blockers, and renin-angiotensin system inhibitors. Most of these findings come from one type of beta-blocker called atenolol. However, beta-blockers are a diverse group of medicines with different properties, and we need more well-conducted research in this area." (p. 2-3)
  18. ^Ladva S (28 June 2006)."NICE and BHS launch updated hypertension guideline".National Institute for Health and Clinical Excellence. Archived fromthe original on 11 May 2008. Retrieved19 August 2012.
  19. ^Cruickshank JM (August 2007). "Are we misunderstanding beta-blockers".International Journal of Cardiology.120 (1):10–27.doi:10.1016/j.ijcard.2007.01.069.PMID 17433471.
  20. ^abcdArcher C, Wiles N, Kessler D, Turner K, Caldwell DM (January 2025)."Beta-blockers for the treatment of anxiety disorders: A systematic review and meta-analysis".J Affect Disord.368:90–99.doi:10.1016/j.jad.2024.09.068.PMID 39271062.
  21. ^Peet M (1988). "The treatment of anxiety with beta-blocking drugs".Postgrad Med J. 64 Suppl 2:45–49.PMID 2905798.
  22. ^Davidson JR (2006)."Pharmacotherapy of social anxiety disorder: what does the evidence tell us?"(PDF).J Clin Psychiatry. 67 Suppl 12:20–26.PMID 17092192.
  23. ^abcdef"TENORMIN® (atenolol) Tablets Drug Label"(PDF). Food and Drug Administration. December 2023. Retrieved8 July 2024.
  24. ^Lindholm LH, Ibsen H, Borch-Johnsen K, Olsen MH, Wachtell K, Dahlöf B, et al. (September 2002). "Risk of new-onset diabetes in the Losartan Intervention For Endpoint reduction in hypertension study".Journal of Hypertension.20 (9):1879–86.doi:10.1097/00004872-200209000-00035.PMID 12195132.S2CID 23613019.
  25. ^Elliott WJ, Meyer PM (January 2007). "Incident diabetes in clinical trials of antihypertensive drugs: a network meta-analysis".Lancet.369 (9557):201–7.doi:10.1016/s0140-6736(07)60108-1.PMID 17240286.S2CID 37044384.
  26. ^Lindholm LH, Carlberg B, Samuelsson O (October 2005). "Should β blockers remain first choice in the treatment of primary hypertension? A meta-analysis".The Lancet.366 (9496):1545–1553.doi:10.1016/S0140-6736(05)67573-3.PMID 16257341.S2CID 34364430.
  27. ^Khan N, McAlister FA (June 2006)."Re-examining the efficacy of beta-blockers for the treatment of hypertension: a meta-analysis".CMAJ.174 (12):1737–42.doi:10.1503/cmaj.060110.PMC 1471831.PMID 16754904.
  28. ^Kuyper LM, Khan NA (May 2014)."Atenolol vs nonatenolol β-blockers for the treatment of hypertension: a meta-analysis".The Canadian Journal of Cardiology.30 (5 Suppl): S47-53.doi:10.1016/j.cjca.2014.01.006.PMID 24750981.
  29. ^Messerli FH, Grossman E, Goldbourt U (June 1998). "Are beta-blockers efficacious as first-line therapy for hypertension in the elderly? A systematic review".JAMA.279 (23):1903–7.doi:10.1001/jama.279.23.1903.PMID 9634263.
  30. ^Keller S, Frishman WH (2003). "Neuropsychiatric effects of cardiovascular drug therapy".Cardiol Rev.11 (2):73–93.doi:10.1097/01.CRD.0000053453.89776.2D.PMID 12620132.
  31. ^Arber N (October 1988)."Delirium induced by atenolol".BMJ.297 (6655): 1048.doi:10.1136/bmj.297.6655.1048-b.PMC 1834788.PMID 3142623.
  32. ^DeLima LG, Kharasch ED, Butler S (July 1995). "Successful pharmacologic treatment of massive atenolol overdose: sequential hemodynamics and plasma atenolol concentrations".Anesthesiology.83 (1):204–7.doi:10.1097/00000542-199507000-00025.PMID 7605000.
  33. ^Baselt R (2008).Disposition of Toxic Drugs and Chemicals in Man (8th ed.). Foster City, Calif.: Biomedical Publications. pp. 116–117.
  34. ^abScheen AJ (September 2011). "Cytochrome P450-mediated cardiovascular drug interactions".Expert Opin Drug Metab Toxicol.7 (9):1065–1082.doi:10.1517/17425255.2011.586337.PMID 21810031.β-Blockers still represent widely prescribed drugs as they cover a wide spectrum of CV indications. Obviously, it is not trivial which β-blocker to choose as they differ both with regard to their PD and PK profiles [82]. It is well known when comparing the characteristics of atenolol, bisoprolol, metoprolol (each β-1 selective) and carvedilol (β-1 and β-2 nonselective). Among these β-blockers, atenolol is mainly eliminated by renal excretion; bisoprolol is in part excreted as parent compound via the renal route (50%); the other 50% are hepatically metabolized; whereas metoprolol and carvedilol are metabolized by CYP2D6. DDIs are mainly observed with those β-blockers that are metabolized via CYP enzymes. However, it should be emphasized that, in general, β-blockers are well-tolerated safe drugs with a large therapeutic index [83].
  35. ^Richards JR, Albertson TE, Derlet RW, Lange RA, Olson KR, Horowitz BZ (May 2015). "Treatment of toxicity from amphetamines, related derivatives, and analogues: a systematic clinical review".Drug Alcohol Depend.150:1–13.doi:10.1016/j.drugalcdep.2015.01.040.PMID 25724076.
  36. ^Vetter VL, Elia J, Erickson C, Berger S, Blum N, Uzark K, et al. (May 2008). "Cardiovascular monitoring of children and adolescents with heart disease receiving medications for attention deficit/hyperactivity disorder [corrected]: a scientific statement from the American Heart Association Council on Cardiovascular Disease in the Young Congenital Cardiac Defects Committee and the Council on Cardiovascular Nursing".Circulation.117 (18):2407–2423.doi:10.1161/CIRCULATIONAHA.107.189473.PMID 18427125.Amphetamines (Adderall, Dexedrine): Electrophysiological Effects of Amphetamines: Amphetamines have been associated with tachyarrhythmias and sudden death.113–115 Many of the electrophysiological effects of amphetamines may be initiated by the release of norepinephrine stores from presynaptic vesicles and blocking of norepinephrine reuptake.116,117 In addition, amphetamines are potent blockers of dopamine uptake and strong central nervous system stimulants. Dopaminergic Effects of Amphetamines: In addition to the β-agonist effects of amphetamines, the dopamine receptors D1 and D2 contribute to the cardiovascular effects of methamphetamine by producing a pressor response accounting for the increase in blood pressure. The D1 receptor also is involved in mediating the positive tachycardic effects of methamphetamine.117
  37. ^Schindler CW, Zheng JW, Tella SR, Goldberg SR (August 1992)."Pharmacological mechanisms in the cardiovascular effects of methamphetamine in conscious squirrel monkeys".Pharmacol Biochem Behav.42 (4):791–796.doi:10.1016/0091-3057(92)90031-a.PMID 1325059.
  38. ^Mores N, Campia U, Navarra P, Cardillo C, Preziosi P (June 1999). "No cardiovascular effects of single-dose pseudoephedrine in patients with essential hypertension treated with beta-blockers".Eur J Clin Pharmacol.55 (4):251–254.doi:10.1007/s002280050624.PMID 10424315.
  39. ^Hassan NA, Gunaid AA, El-Khally FM, Al-Noami MY, Murray-Lyon IM (April 2005). "Khat chewing and arterial blood pressure. A randomized controlled clinical trial of alpha-1 and selective beta-1 adrenoceptor blockade".Saudi Med J.26 (4):537–541.PMID 15900355.
  40. ^O'Connell MB, Gross CR (1990). "The effect of single-dose phenylpropanolamine on blood pressure in patients with hypertension controlled by beta blockers".Pharmacotherapy.10 (2):85–91.doi:10.1002/j.1875-9114.1990.tb02554.x.PMID 2349137.
  41. ^O'Connell MB, Gross CR (1991). "The effect of multiple doses of phenylpropanolamine on the blood pressure of patients whose hypertension was controlled with beta blockers".Pharmacotherapy.11 (5):376–81.doi:10.1002/j.1875-9114.1991.tb02648.x.PMID 1684039.
  42. ^abGadde KM, Krishnan KR (1998)."Management of Side Effects of Monoamine Oxidase Inhibitors". In Balon R (ed.).Practical Management of the Side Effects of Psychotropic Drugs. Medical Psychiatry Series. CRC Press. pp. 67–83 (71).ISBN 978-0-8247-4630-8. Retrieved8 July 2024.Interestingly, in one study, orthostatic hypotension was eliminated in a group of 61 patients treated for migraine headaches with phenelzine, when a beta-blocker, atenolol, was added (15). The authors have reported that hypertensive reactions were also less frequent when the two drugs were combined. We need further experience with this combination to determine whether addition of a beta-blocker is a safe and an effective strategy for alleviation of postural hypotension in depressed patients receiving an MAOI.
  43. ^O'Brien P, Oyebode F (2003). "Psychotropic medication and the heart".Advances in Psychiatric Treatment.9 (6):414–423.doi:10.1192/apt.9.6.414.ISSN 1355-5146.Postural hypotension is also a risk when antipsychotics are taken with β-blockers (probably because of pharmacokinetic interaction) or with diuretics (because of Na+ or volume depletion). The same hypotensive effects might be anticipated when tricyclic antidepressants or MAOIs are co-prescribed with peripheral antihypertensive agonists. One possible exception concerns phenelzine, whose hypotensive action was reversed on co-therapy with atenolol (Merikangas & Merikangas, 1995).
  44. ^abMerikangas KR, Merikangas JR (November 1995)."Combination monoamine oxidase inhibitor and beta-blocker treatment of migraine, with anxiety and depression".Biol Psychiatry.38 (9):603–610.doi:10.1016/0006-3223(95)00077-1.PMID 8573662.
  45. ^"Kᵢ Database".
  46. ^Liu T."Activity Spreadsheet--Enzyme Inhibition Constant Data from BindingDB".www.bindingdb.org. Retrieved27 July 2025.
  47. ^abcdCojocariu SA, Maștaleru A, Sascău RA, Stătescu C, Mitu F, Leon-Constantin MM (February 2021)."Neuropsychiatric Consequences of Lipophilic Beta-Blockers".Medicina (Kaunas).57 (2): 155.doi:10.3390/medicina57020155.PMC 7914867.PMID 33572109.
  48. ^Drayer DE (1987). "Lipophilicity, hydrophilicity, and the central nervous system side effects of beta blockers".Pharmacotherapy.7 (4):87–91.doi:10.1002/j.1875-9114.1987.tb04029.x.PMID 2891122.
  49. ^abc"Atenolol".PubChem. Retrieved1 August 2024.
  50. ^"Atenolol: Uses, Interactions, Mechanism of Action".DrugBank Online. 13 August 2004. Retrieved1 August 2024.
  51. ^"DL-Atenolol".ChemSpider. 21 July 2022. Retrieved1 August 2024.
  52. ^Mannhold R (February 2005). "The impact of lipophilicity in drug research: a case report on beta-blockers".Mini Rev Med Chem.5 (2):197–205.doi:10.2174/1389557053402701.PMID 15720289.
  53. ^abcdEpstein D (22 July 2017)."When Evidence Says No, But Doctors Say Yes".The Atlantic.Archived from the original on 9 May 2018. Retrieved8 May 2018.
  54. ^Choi HY, Oh IJ, Lee JA, Lim J, Kim YS, Jeon TH, et al. (November 2018)."Factors Affecting Adherence to Antihypertensive Medication".Korean Journal of Family Medicine.39 (6):325–332.doi:10.4082/kjfm.17.0041.PMC 6250947.PMID 30384549.
β, non-selective
β1-selective
β2-selective
α1- + β-selective
5-HT1ARTooltip 5-HT1A receptoragonists
GABAARTooltip GABAA receptorPAMsTooltip positive allosteric modulators
Gabapentinoids
(α2δVDCCblockers)
Antidepressants
Sympatholytics
(Antiadrenergics)
Others
α1
Agonists
Antagonists
α2
Agonists
Antagonists
β
Agonists
Antagonists
Products
Predecessors and
acquired companies
People
Portal:
National
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Atenolol&oldid=1314350700"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp