Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Error function

From Wikipedia, the free encyclopedia
Sigmoid shape special function

Not to be confused withLoss function.

In mathematics, theerror function (also called theGauss error function), often denoted byerf, is a functionerf:CC{\displaystyle \mathrm {erf} :\mathbb {C} \to \mathbb {C} } defined as:[1]erf(z)=2π0zet2dt.{\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\int _{0}^{z}e^{-t^{2}}\,dt.}

Error function
Plot of the error function over real numbers
Plot of the error function over real numbers
General information
General definitionerf(z)=2π0zet2dt{\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\int _{0}^{z}e^{-t^{2}}\,\mathrm {d} t}
Fields of applicationProbability, thermodynamics, digital communications
Domain, codomain and image
DomainC{\displaystyle \mathbb {C} }
Image(1,1){\displaystyle \left(-1,1\right)}
Basic features
ParityOdd
Specific features
Root0
Derivativeddzerf(z)=2πez2{\displaystyle {\frac {d}{dz}}\operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}e^{-z^{2}}}
Antiderivativeerf(z)dz=zerf(z)+ez2π+C{\displaystyle \int \operatorname {erf} (z)\,dz=z\operatorname {erf} (z)+{\frac {e^{-z^{2}}}{\sqrt {\pi }}}+C}
Series definition
Taylor serieserf(z)=2πn=0(1)n2n+1z2n+1n!{\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}}{2n+1}}{\frac {z^{2n+1}}{n!}}}

The integral here is a complexcontour integral which is path-independent becauseexp(t2){\displaystyle \exp(-t^{2})} isholomorphic on the whole complex planeC{\displaystyle \mathbb {C} }. In many applications, the function argument is areal number, in which case the function value is also real.

In some old texts,[2]the error function is defined without the factor of2π{\displaystyle {\tfrac {2}{\sqrt {\pi }}}}.Thisnonelementary integral is asigmoid function that occurs often inprobability,statistics, andpartial differential equations.

In statistics, for non-negative real values ofx, the error function has the following interpretation: for a realrandom variableY that isnormally distributed withmean 0 andstandard deviation12{\displaystyle {\tfrac {1}{\sqrt {2}}}},erf(x) is the probability thatY falls in the range[−x,x].

Two closely related functions are thecomplementary error function erfc:CC,{\displaystyle \mathbb {C} \to \mathbb {C} ,} defined as

erfc(z)=1erf(z),{\displaystyle \operatorname {erfc} (z)=1-\operatorname {erf} (z),}

and theimaginary error function erfi:CC,{\displaystyle \mathbb {C} \to \mathbb {C} ,} defined as

erfi(z)=ierf(iz),{\displaystyle \operatorname {erfi} (z)=-i\operatorname {erf} (iz),}

wherei is theimaginary unit.

Name

[edit]

The name "error function" and its abbreviationerf were proposed byJ. W. L. Glaisher in 1871 on account of its connection with "the theory of probability, and notably the theory oferrors".[3] The error function complement was also discussed by Glaisher in a separate publication in the same year.[4]For the "law of facility" of errors whosedensity is given byf(x)=(cπ)1/2ecx2{\displaystyle f(x)=\left({\frac {c}{\pi }}\right)^{1/2}e^{-cx^{2}}}(thenormal distribution), Glaisher calculates the probability of an error lying betweenp andq as(cπ)12pqecx2dx=12(erf(qc)erf(pc)).{\displaystyle \left({\frac {c}{\pi }}\right)^{\frac {1}{2}}\int _{p}^{q}e^{-cx^{2}}\,dx={\frac {1}{2}}{\big (}\operatorname {erf} (q{\sqrt {c}})-\operatorname {erf} (p{\sqrt {c}}){\big )}.}

Applications

[edit]

When the results of a series of measurements are described by anormal distribution withstandard deviationσ andexpected value 0, thenerf (a/σ2) is the probability that the error of a single measurement lies betweena and+a, for positivea. This is useful, for example, in determining thebit error rate of a digital communication system.

The error and complementary error functions occur, for example, in solutions of theheat equation whenboundary conditions are given by theHeaviside step function.

The error function and its approximations can be used to estimate results that holdwith high probability or with low probability. Given a random variableX ~ Norm[μ,σ] (a normal distribution with meanμ and standard deviationσ) and a constantL >μ, it can be shown viaintegration by substitution:Pr[XL]=12+12erf(Lμ2σ)Aexp(B(Lμσ)2){\displaystyle {\begin{aligned}\Pr[X\leq L]&={\frac {1}{2}}+{\frac {1}{2}}\operatorname {erf} \left({\frac {L-\mu }{{\sqrt {2}}\sigma }}\right)\\&\approx A\exp \left(-B\left({\frac {L-\mu }{\sigma }}\right)^{2}\right)\end{aligned}}}

whereA andB are certain numeric constants. IfL is sufficiently far from the mean, specificallyμLσln(k), then:

Pr[XL]Aexp(Bln(k))=AkB{\displaystyle \Pr[X\leq L]\leq A\exp(-B\ln(k))={\frac {A}{k^{B}}}}

so the probability goes to 0 ask → ∞.

The probability forX being in the interval[La,Lb] can be derived asPr[LaXLb]=LaLb12πσexp((xμ)22σ2)dx=12(erf(Lbμ2σ)erf(Laμ2σ)).{\displaystyle {\begin{aligned}\Pr[L_{a}\leq X\leq L_{b}]&=\int _{L_{a}}^{L_{b}}{\frac {1}{{\sqrt {2\pi }}\sigma }}\exp \left(-{\frac {(x-\mu )^{2}}{2\sigma ^{2}}}\right)\,dx\\&={\frac {1}{2}}\left(\operatorname {erf} \left({\frac {L_{b}-\mu }{{\sqrt {2}}\sigma }}\right)-\operatorname {erf} \left({\frac {L_{a}-\mu }{{\sqrt {2}}\sigma }}\right)\right).\end{aligned}}}

Properties

[edit]
Plots in the complex plane
Integrandexp(−z2)
erf(z)

The propertyerf (−z) = −erf(z) means that the error function is anodd function. This directly results from the fact that the integrandet2 is aneven function (the antiderivative of an even function which is zero at the origin is an odd function and vice versa).

Since the error function is anentire function which maps real numbers to real numbers, for anycomplex numberz:erf(z¯)=erf(z)¯{\displaystyle \operatorname {erf} ({\overline {z}})={\overline {\operatorname {erf} (z)}}}wherez¯{\displaystyle {\overline {z}}} denotes thecomplex conjugate ofz{\displaystyle z}.

The integrandf = exp(−z2) andf = erf(z) are shown in the complexz-plane in the figures at right withdomain coloring.

The error function at+∞ is exactly 1 (seeGaussian integral). At the real axis,erfz approaches unity atz → +∞ and −1 atz → −∞. At the imaginary axis, it tends to±i.

Taylor series

[edit]

The error function is anentire function; it has no singularities (except that at infinity) and itsTaylor expansion always converges. Forx >> 1, however, cancellation of leading terms makes the Taylor expansion unpractical.

The defining integral cannot be evaluated inclosed form in terms ofelementary functions (seeLiouville's theorem), but by expanding theintegrandez2 into itsMaclaurin series and integrating term by term, one obtains the error function's Maclaurin series as:erf(z)=2πn=0(1)nz2n+1n!(2n+1)=2π(zz33+z510z742+z9216){\displaystyle {\begin{aligned}\operatorname {erf} (z)&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-1)^{n}z^{2n+1}}{n!(2n+1)}}\\[6pt]&={\frac {2}{\sqrt {\pi }}}\left(z-{\frac {z^{3}}{3}}+{\frac {z^{5}}{10}}-{\frac {z^{7}}{42}}+{\frac {z^{9}}{216}}-\cdots \right)\end{aligned}}}which holds for everycomplex number z. The denominator terms are sequenceA007680 in theOEIS.

It is a special case ofKummer's function:

erf(z)=2zπ1F1(1/2;3/2;z2).{\displaystyle \operatorname {erf} (z)={\frac {2z}{\sqrt {\pi }}}\,{}_{1}F_{1}(1/2;3/2;-z^{2}).}

For iterative calculation of the above series, the following alternative formulation may be useful:erf(z)=2πn=0(zk=1n(2k1)z2k(2k+1))=2πn=0z2n+1k=1nz2k{\displaystyle {\begin{aligned}\operatorname {erf} (z)&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }\left(z\prod _{k=1}^{n}{\frac {-(2k-1)z^{2}}{k(2k+1)}}\right)\\[6pt]&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z}{2n+1}}\prod _{k=1}^{n}{\frac {-z^{2}}{k}}\end{aligned}}}because−(2k − 1)z2/k(2k + 1) expresses the multiplier to turn thekth term into the(k + 1)th term (consideringz as the first term).

The imaginary error function has a very similar Maclaurin series, which is:erfi(z)=2πn=0z2n+1n!(2n+1)=2π(z+z33+z510+z742+z9216+){\displaystyle {\begin{aligned}\operatorname {erfi} (z)&={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {z^{2n+1}}{n!(2n+1)}}\\[6pt]&={\frac {2}{\sqrt {\pi }}}\left(z+{\frac {z^{3}}{3}}+{\frac {z^{5}}{10}}+{\frac {z^{7}}{42}}+{\frac {z^{9}}{216}}+\cdots \right)\end{aligned}}}which holds for everycomplex number z.

Derivative and integral

[edit]

The derivative of the error function follows immediately from its definition:ddzerf(z)=2πez2.{\displaystyle {\frac {d}{dz}}\operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}e^{-z^{2}}.}From this, the derivative of the imaginary error function is also immediate:ddzerfi(z)=2πez2.{\displaystyle {\frac {d}{dz}}\operatorname {erfi} (z)={\frac {2}{\sqrt {\pi }}}e^{z^{2}}.}Higher order derivatives are given byerf(k)(z)=2(1)k1πHk1(z)ez2=2πdk1dzk1(ez2),k=1,2,{\displaystyle \operatorname {erf} ^{(k)}(z)={\frac {2(-1)^{k-1}}{\sqrt {\pi }}}{\mathit {H}}_{k-1}(z)e^{-z^{2}}={\frac {2}{\sqrt {\pi }}}{\frac {d^{k-1}}{dz^{k-1}}}\left(e^{-z^{2}}\right),\qquad k=1,2,\dots }whereH are the physicists'Hermite polynomials.[5]

Anantiderivative of the error function, obtainable byintegration by parts, iserf(z)dz=zerf(z)+ez2π+C.{\displaystyle \int \operatorname {erf} (z)dz=z\operatorname {erf} (z)+{\frac {e^{-z^{2}}}{\sqrt {\pi }}}+C.}An antiderivative of the imaginary error function, also obtainable by integration by parts, iserfi(z)dz=zerfi(z)ez2π+C.{\displaystyle \int \operatorname {erfi} (z)dz=z\operatorname {erfi} (z)-{\frac {e^{z^{2}}}{\sqrt {\pi }}}+C.}

Bürmann series

[edit]

An expansion[6] which converges more rapidly for all real values ofx than a Taylor expansion is obtained by usingHans Heinrich Bürmann's theorem:[7]erf(x)=2πsgn(x)1ex2(1112(1ex2)7480(1ex2)25896(1ex2)3787276480(1ex2)4)=2πsgn(x)1ex2(π2+k=1ckekx2){\displaystyle {\begin{aligned}\operatorname {erf} (x)&={\frac {2}{\sqrt {\pi }}}\operatorname {sgn}(x)\cdot {\sqrt {1-e^{-x^{2}}}}\left(1-{\frac {1}{12}}\left(1-e^{-x^{2}}\right)-{\frac {7}{480}}\left(1-e^{-x^{2}}\right)^{2}-{\frac {5}{896}}\left(1-e^{-x^{2}}\right)^{3}-{\frac {787}{276480}}\left(1-e^{-x^{2}}\right)^{4}-\cdots \right)\\[10pt]&={\frac {2}{\sqrt {\pi }}}\operatorname {sgn}(x)\cdot {\sqrt {1-e^{-x^{2}}}}\left({\frac {\sqrt {\pi }}{2}}+\sum _{k=1}^{\infty }c_{k}e^{-kx^{2}}\right)\end{aligned}}}wheresgn is thesign function. By keeping only the first two coefficients and choosingc1 =31/200 andc2 = −341/8000, the resulting approximation shows its largestrelative error atx = ±1.40587, where it is less than 0.0034361:erf(x)2πsgn(x)1ex2(π2+31200ex23418000e2x2).{\displaystyle \operatorname {erf} (x)\approx {\frac {2}{\sqrt {\pi }}}\operatorname {sgn}(x)\cdot {\sqrt {1-e^{-x^{2}}}}\left({\frac {\sqrt {\pi }}{2}}+{\frac {31}{200}}e^{-x^{2}}-{\frac {341}{8000}}e^{-2x^{2}}\right).}

Inverse functions

[edit]
Inverse error function

Given a complex numberz, there is not aunique complex numberw satisfyingerf(w) =z, so a true inverse function would be multivalued. However, for−1 <x < 1, there is a uniquereal number denotederf−1(x) satisfyingerf(erf1(x))=x.{\displaystyle \operatorname {erf} \left(\operatorname {erf} ^{-1}(x)\right)=x.}

Theinverse error function is usually defined with domain(−1,1), and it is restricted to this domain in manycomputer algebra systems. However, it can be extended to the disk|z| < 1 of the complex plane, using the Maclaurin series[8]erf1(z)=k=0ck2k+1(π2z)2k+1,{\displaystyle \operatorname {erf} ^{-1}(z)=\sum _{k=0}^{\infty }{\frac {c_{k}}{2k+1}}\left({\frac {\sqrt {\pi }}{2}}z\right)^{2k+1},}wherec0 = 1 andck=m=0k1cmck1m(m+1)(2m+1)={1,1,76,12790,43692520,3480716200,}.{\displaystyle {\begin{aligned}c_{k}&=\sum _{m=0}^{k-1}{\frac {c_{m}c_{k-1-m}}{(m+1)(2m+1)}}\\[1ex]&=\left\{1,1,{\frac {7}{6}},{\frac {127}{90}},{\frac {4369}{2520}},{\frac {34807}{16200}},\ldots \right\}.\end{aligned}}}

So we have the series expansion (common factors have been canceled from numerators and denominators):erf1(z)=π2(z+π12z3+7π2480z5+127π340320z7+4369π45806080z9+34807π5182476800z11+).{\displaystyle \operatorname {erf} ^{-1}(z)={\frac {\sqrt {\pi }}{2}}\left(z+{\frac {\pi }{12}}z^{3}+{\frac {7\pi ^{2}}{480}}z^{5}+{\frac {127\pi ^{3}}{40320}}z^{7}+{\frac {4369\pi ^{4}}{5806080}}z^{9}+{\frac {34807\pi ^{5}}{182476800}}z^{11}+\cdots \right).}(After cancellation the numerator and denominator values in (sequenceA092676 in theOEIS) and (sequenceA092677 in theOEIS) respectively; without cancellation the numerator terms are values in (sequenceA002067 in theOEIS).) The error function's value at ±∞ is equal to ±1.

For|z| < 1, we haveerf(erf−1(z)) =z.

Theinverse complementary error function is defined aserfc1(1z)=erf1(z).{\displaystyle \operatorname {erfc} ^{-1}(1-z)=\operatorname {erf} ^{-1}(z).}For realx, there is a uniquereal numbererfi−1(x) satisfyingerfi(erfi−1(x)) =x. Theinverse imaginary error function is defined aserfi−1(x).[9]

For any realx,Newton's method can be used to computeerfi−1(x), and for−1 ≤x ≤ 1, the following Maclaurin series converges:erfi1(z)=k=0(1)kck2k+1(π2z)2k+1,{\displaystyle \operatorname {erfi} ^{-1}(z)=\sum _{k=0}^{\infty }{\frac {(-1)^{k}c_{k}}{2k+1}}\left({\frac {\sqrt {\pi }}{2}}z\right)^{2k+1},}whereck is defined as above.

Asymptotic expansion

[edit]

A usefulasymptotic expansion of the complementary error function (and therefore also of the error function) for large realx iserfc(x)=ex2xπ(1+n=1(1)n135(2n1)(2x2)n)=ex2xπn=0(1)n(2n1)!!(2x2)n,{\displaystyle {\begin{aligned}\operatorname {erfc} (x)&={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\left(1+\sum _{n=1}^{\infty }(-1)^{n}{\frac {1\cdot 3\cdot 5\cdots (2n-1)}{\left(2x^{2}\right)^{n}}}\right)\\[6pt]&={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{\infty }(-1)^{n}{\frac {(2n-1)!!}{\left(2x^{2}\right)^{n}}},\end{aligned}}}where(2n − 1)!! is thedouble factorial of(2n − 1), which is the product of all odd numbers up to(2n − 1). This series diverges for every finitex, and its meaning as asymptotic expansion is that for any integerN ≥ 1 one haserfc(x)=ex2xπn=0N1(1)n(2n1)!!(2x2)n+RN(x){\displaystyle \operatorname {erfc} (x)={\frac {e^{-x^{2}}}{x{\sqrt {\pi }}}}\sum _{n=0}^{N-1}(-1)^{n}{\frac {(2n-1)!!}{\left(2x^{2}\right)^{n}}}+R_{N}(x)}where the remainder isRN(x):=(1)N(2N1)!!π2N1xt2Net2dt,{\displaystyle R_{N}(x):={\frac {(-1)^{N}\,(2N-1)!!}{{\sqrt {\pi }}\cdot 2^{N-1}}}\int _{x}^{\infty }t^{-2N}e^{-t^{2}}\,\mathrm {d} t,}which follows easily by induction, writinget2=12tddtet2{\displaystyle e^{-t^{2}}=-{\frac {1}{2t}}\,{\frac {\mathrm {d} }{\mathrm {d} t}}e^{-t^{2}}}and integrating by parts.

The asymptotic behavior of the remainder term, inLandau notation, isRN(x)=O(x(1+2N)ex2){\displaystyle R_{N}(x)=O\left(x^{-(1+2N)}e^{-x^{2}}\right)}asx → ∞. This can be found byRN(x)xt2Net2dt=ex20(t+x)2Net22txdtex20x2Ne2txdtx(1+2N)ex2.{\displaystyle R_{N}(x)\propto \int _{x}^{\infty }t^{-2N}e^{-t^{2}}\,\mathrm {d} t=e^{-x^{2}}\int _{0}^{\infty }(t+x)^{-2N}e^{-t^{2}-2tx}\,\mathrm {d} t\leq e^{-x^{2}}\int _{0}^{\infty }x^{-2N}e^{-2tx}\,\mathrm {d} t\propto x^{-(1+2N)}e^{-x^{2}}.}For large enough values ofx, only the first few terms of this asymptotic expansion are needed to obtain a good approximation oferfcx (while for not too large values ofx, the above Taylor expansion at 0 provides a very fast convergence).

Continued fraction expansion

[edit]

Acontinued fraction expansion of the complementary error function was found byLaplace:[10][11]erfc(z)=zπez21z2+a11+a2z2+a31+,am=m2.{\displaystyle \operatorname {erfc} (z)={\frac {z}{\sqrt {\pi }}}e^{-z^{2}}{\cfrac {1}{z^{2}+{\cfrac {a_{1}}{1+{\cfrac {a_{2}}{z^{2}+{\cfrac {a_{3}}{1+\dotsb }}}}}}}},\qquad a_{m}={\frac {m}{2}}.}

Factorial series

[edit]

The inversefactorial series:erfc(z)=ez2πzn=0(1)nQn(z2+1)n¯=ez2πz[1121(z2+1)+141(z2+1)(z2+2)]{\displaystyle {\begin{aligned}\operatorname {erfc} (z)&={\frac {e^{-z^{2}}}{{\sqrt {\pi }}\,z}}\sum _{n=0}^{\infty }{\frac {\left(-1\right)^{n}Q_{n}}{{\left(z^{2}+1\right)}^{\bar {n}}}}\\[1ex]&={\frac {e^{-z^{2}}}{{\sqrt {\pi }}\,z}}\left[1-{\frac {1}{2}}{\frac {1}{(z^{2}+1)}}+{\frac {1}{4}}{\frac {1}{\left(z^{2}+1\right)\left(z^{2}+2\right)}}-\cdots \right]\end{aligned}}}converges forRe(z2) > 0. HereQn=def1Γ(12)0τ(τ1)(τn+1)τ12eτdτ=k=0ns(n,k)2k¯,{\displaystyle {\begin{aligned}Q_{n}&{\overset {\text{def}}{{}={}}}{\frac {1}{\Gamma {\left({\frac {1}{2}}\right)}}}\int _{0}^{\infty }\tau (\tau -1)\cdots (\tau -n+1)\tau ^{-{\frac {1}{2}}}e^{-\tau }\,d\tau \\[1ex]&=\sum _{k=0}^{n}{\frac {s(n,k)}{2^{\bar {k}}}},\end{aligned}}}zn denotes therising factorial, ands(n,k) denotes a signedStirling number of the first kind.[12][13]The Taylor series can be written in terms of thedouble factorial:erf(z)=2πn=0(2)n(2n1)!!(2n+1)!z2n+1{\displaystyle \operatorname {erf} (z)={\frac {2}{\sqrt {\pi }}}\sum _{n=0}^{\infty }{\frac {(-2)^{n}(2n-1)!!}{(2n+1)!}}z^{2n+1}}

Bounds and numerical approximations

[edit]

Approximation with elementary functions

[edit]

Abramowitz and Stegun give several approximations of varying accuracy (equations 7.1.25–28). This allows one to choose the fastest approximation suitable for a given application. In order of increasing accuracy, they are:erf(x)11(1+a1x+a2x2+a3x3+a4x4)4,x0{\displaystyle \operatorname {erf} (x)\approx 1-{\frac {1}{\left(1+a_{1}x+a_{2}x^{2}+a_{3}x^{3}+a_{4}x^{4}\right)^{4}}},\qquad x\geq 0}(maximum error:5×10−4)

wherea1 = 0.278393,a2 = 0.230389,a3 = 0.000972,a4 = 0.078108

erf(x)1(a1t+a2t2+a3t3)ex2,t=11+px,x0{\displaystyle \operatorname {erf} (x)\approx 1-\left(a_{1}t+a_{2}t^{2}+a_{3}t^{3}\right)e^{-x^{2}},\quad t={\frac {1}{1+px}},\qquad x\geq 0}(maximum error:2.5×10−5)

wherep = 0.47047,a1 = 0.3480242,a2 = −0.0958798,a3 = 0.7478556

erf(x)11(1+a1x+a2x2++a6x6)16,x0{\displaystyle \operatorname {erf} (x)\approx 1-{\frac {1}{\left(1+a_{1}x+a_{2}x^{2}+\cdots +a_{6}x^{6}\right)^{16}}},\qquad x\geq 0}(maximum error:3×10−7)

wherea1 = 0.0705230784,a2 = 0.0422820123,a3 = 0.0092705272,a4 = 0.0001520143,a5 = 0.0002765672,a6 = 0.0000430638

erf(x)1(a1t+a2t2++a5t5)ex2,t=11+px{\displaystyle \operatorname {erf} (x)\approx 1-\left(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5}\right)e^{-x^{2}},\quad t={\frac {1}{1+px}}}(maximum error:1.5×10−7)

wherep = 0.3275911,a1 = 0.254829592,a2 = −0.284496736,a3 = 1.421413741,a4 = −1.453152027,a5 = 1.061405429

One can improve the accuracy of the A&S approximation by extending it with three extra parameters,erf(x)1(a1t+a2t2++a5t5+a6t6+a7t7)ex2,t=11+p1x+p2x2{\displaystyle \operatorname {erf} (x)\approx 1-\left(a_{1}t+a_{2}t^{2}+\cdots +a_{5}t^{5}+a_{6}t^{6}+a_{7}t^{7}\right)e^{-x^{2}},\quad t={\frac {1}{1+p_{1}x+p_{2}x^{2}}}}where p1 = 0.406742016006509,p2 = 0.0072279182302319,a1 = 0.316879890481381,a2 = -0.138329314150635,a3 = 1.08680830347054,a4 = -1.11694155120396,a5 = 1.20644903073232,a6 = -0.393127715207728,a7 = 0.0382613542530727.The maximum error of this approximation is about2×10−9. The parameters are obtained by fitting the extended approximation to the accurate values of the error function using the following Python code.

Python code to fit extended A&S approximation
importnumpyasnpfrommathimporterf,exp,sqrtfromscipy.optimizeimportleast_squares## Extended A&S approximation:# erf(x) ≈ 1 − t * exp(−x^2) * (a1 + a2*t + a3*t^2 + ... + a7*t^6)# where now#      t = 1 / (1 + p1*x + p2*x^2)# We fit parameters p1, p2, a1..a7 over x in [0, 10].#defapprox_erf(params,x):p1=params[0]p2=params[1]a=params[2:]t=1.0/(1.0+p1*x+p2*x*x)poly=np.zeros_like(x)tt=np.ones_like(x)# t^0# polynomial: a1*t^0 + a2*t^1 + ... + a7*t^6forakina:poly+=ak*tttt*=treturn1.0-t*np.exp(-x*x)*polydefresiduals(params,xs,ys):returnapprox_erf(params,xs)-ys## Prepare data for fitting#N=300xmin=0xmax=10xs=np.linspace(xmin,xmax,N)ys=np.array([erf(x)forxinxs],dtype=float)## Initial guess for parameters# Start from original A&S values and extend them conservatively#p1_0=0.3275911# original A&S pp2_0=0.0# new denominator parameter# original A&S 5 coefficients, add two => 7 in totala0=[0.254829592,-0.284496736,1.421413741,-1.453152027,1.061405429,0.0,# new term0.0,# another new term]params0=np.array([p1_0,p2_0]+a0,dtype=float)## Fit using nonlinear least squares (Levenberg–Marquardt)#result=least_squares(residuals,params0,args=(xs,ys),xtol=1e-14,ftol=1e-14,gtol=1e-14,max_nfev=5000)params=result.xp1_fit=params[0]p2_fit=params[1]a_fit=params[2:]## Print fitted parameters#print("\nFitted parameters:")print(f"p1 ={p1_fit:.15g},")print(f"p2 ={p2_fit:.15g},")fori,aiinenumerate(a_fit,1):print(f"a{i} ={ai:.15g},")## Evaluate approximation error#approx_vals=approx_erf(params,xs)abs_err=np.abs(approx_vals-ys)print(f"\nMaximum absolute error on [{xmin},{xmax}]:",np.max(abs_err))print("RMS error:",np.sqrt(np.mean(abs_err**2)))print("Done.")


All of these approximations are valid forx ≥ 0. To use these approximations for negativex, use the fact thaterf(x) is an odd function, soerf(x) = −erf(−x).


Exponential bounds and a pure exponential approximation for the complementary error function are given by[14]erfc(x)12e2x2+12ex2ex2,x>0erfc(x)16ex2+12e43x2,x>0.{\displaystyle {\begin{aligned}\operatorname {erfc} (x)&\leq {\frac {1}{2}}e^{-2x^{2}}+{\frac {1}{2}}e^{-x^{2}}\leq e^{-x^{2}},&&x>0\\[1.5ex]\operatorname {erfc} (x)&\approx {\frac {1}{6}}e^{-x^{2}}+{\frac {1}{2}}e^{-{\frac {4}{3}}x^{2}},&&x>0.\end{aligned}}}

The above have been generalized to sums ofN exponentials[15] with increasing accuracy in terms ofN so thaterfc(x) can be accurately approximated or bounded by2(2x), whereQ~(x)=n=1Nanebnx2.{\displaystyle {\tilde {Q}}(x)=\sum _{n=1}^{N}a_{n}e^{-b_{n}x^{2}}.}In particular, there is a systematic methodology to solve the numerical coefficients{(an,bn)}N
n = 1
that yield aminimax approximation or bound for the closely relatedQ-function:Q(x) ≈(x),Q(x) ≤(x), orQ(x) ≥(x) forx ≥ 0. The coefficients{(an,bn)}N
n = 1
for many variations of the exponential approximations and bounds up toN = 25 have been released to open access as a comprehensive dataset.[16]


A tight approximation of the complementary error function forx ∈ [0,∞) is given byKaragiannidis & Lioumpas (2007),[17] who showed for the appropriate choice of parameters{A,B} thaterfc(x)(1eAx)ex2Bπx.{\displaystyle \operatorname {erfc} (x)\approx {\frac {\left(1-e^{-Ax}\right)e^{-x^{2}}}{B{\sqrt {\pi }}x}}.}They determined{A,B} = {1.98,1.135}, which gave a good approximation[which?] for allx ≥ 0. Alternative coefficients are also available for tailoring accuracy for a specific application or transforming the expression into a tight bound.[18]

A single-term lower bound is[19]erfc(x)2eπβ1βeβx2,x0,β>1,{\displaystyle \operatorname {erfc} (x)\geq {\sqrt {\frac {2e}{\pi }}}{\frac {\sqrt {\beta -1}}{\beta }}e^{-\beta x^{2}},\qquad x\geq 0,\quad \beta >1,}where the parameterβ can be picked to minimize error on the desired interval of approximation.

Another approximation is given by Sergei Winitzki using his "global Padé approximations":[20][21]: 2–3 erf(x)sgnx1exp(x24π+ax21+ax2){\displaystyle \operatorname {erf} (x)\approx \operatorname {sgn} x\cdot {\sqrt {1-\exp \left(-x^{2}{\frac {{\frac {4}{\pi }}+ax^{2}}{1+ax^{2}}}\right)}}}wherea=8(π3)3π(4π)0.140012.{\displaystyle a={\frac {8(\pi -3)}{3\pi (4-\pi )}}\approx 0.140012.}This is designed to be very accurate in the neighborhoods of 0 and infinity, and therelative error is less than 0.00035 for all realx. Using the alternate valuea ≈ 0.147 reduces the maximum relative error to about 0.00013.[22]

The extended "global Pade" approximation,erf(x)sgnx1exp(x24+0.880877880079853x2+0.144026670907584x4+0.0077581300270021x6π+0.786235558186528x2+0.128368576906837x4+0.00773380006014367x6),{\displaystyle \operatorname {erf} (x)\approx \operatorname {sgn} x\cdot {\sqrt {1-\exp \left(-x^{2}{\frac {4+0.880877880079853x^{2}+0.144026670907584x^{4}+0.0077581300270021x^{6}}{\pi +0.786235558186528x^{2}+0.128368576906837x^{4}+0.00773380006014367x^{6}}}\right)}}\,,}provides a maximum error of about2×10−9, as demonstrated by the following Python script.

Python script to fit extended "global Pade" approximation
importnumpy,mathfromscipy.optimizeimportleast_squares# approximation to erf(x)defapprox_erf(p,x):frac=(4+p[0]*x**2+p[1]*x**4+p[2]*x**6)/(math.pi+p[3]*x**2+p[4]*x**4+p[5]*x**6)returnnumpy.sign(x)*numpy.sqrt(1-numpy.exp(-x*x*frac))defresiduals(params,xs,ys):returnapprox_erf(params,xs)-ys# data for fittingN=200xmin=0xmax=9xs=numpy.linspace(xmin,xmax,N)ys=numpy.array([math.erf(x)forxinxs],dtype=float)params0=numpy.array([0.9,0.1,0.008,0.8,0.1,0.008],dtype=float)# fittingresult=least_squares(residuals,params0,args=(xs,ys),xtol=1e-14,ftol=1e-14,gtol=1e-14,max_nfev=5000)params=result.x# print out fitted parametersprint("\nFitted parameters:")fori,piinenumerate(params,0):print(f"p{i} ={pi:.15g},")# evaluate approximation errorapprox_vals=approx_erf(params,xs)abs_err=numpy.abs(approx_vals-ys)print(f"\nMaximum absolute error on [{xmin},{xmax}]:",numpy.max(abs_err))print("RMS error:",numpy.sqrt(numpy.mean(abs_err**2)))print("Done.")

Winitzki's approximation can be inverted to obtain an approximation for the inverse error function:erf1(x)sgnx(2πa+ln(1x2)2)2ln(1x2)a(2πa+ln(1x2)2).{\displaystyle \operatorname {erf} ^{-1}(x)\approx \operatorname {sgn} x\cdot {\sqrt {{\sqrt {\left({\frac {2}{\pi a}}+{\frac {\ln \left(1-x^{2}\right)}{2}}\right)^{2}-{\frac {\ln \left(1-x^{2}\right)}{a}}}}-\left({\frac {2}{\pi a}}+{\frac {\ln \left(1-x^{2}\right)}{2}}\right)}}.}

An approximation with a maximal error of1.2×10−7 for any real argument is:[23]erf(x)={1τ,x0τ1,x<0τ=texp(x21.26551223+1.00002368t+0.37409196t2+0.09678418t30.18628806t4+0.27886807t51.13520398t6+1.48851587t70.82215223t8+0.17087277t9)t=11+12|x|{\displaystyle {\begin{aligned}\operatorname {erf} (x)&={\begin{cases}1-\tau ,&x\geq 0\\\tau -1,&x<0\end{cases}}\\\tau &=t\cdot \exp \left(-x^{2}-1.26551223+1.00002368t+0.37409196t^{2}+0.09678418t^{3}-0.18628806t^{4}\right.\\&\left.\qquad \qquad \qquad +0.27886807t^{5}-1.13520398t^{6}+1.48851587t^{7}-0.82215223t^{8}+0.17087277t^{9}\right)\\t&={\frac {1}{1+{\frac {1}{2}}|x|}}\end{aligned}}}

An approximation oferfc{\displaystyle \operatorname {erfc} } with a maximum relative error less than253{\displaystyle 2^{-53}}(1.1×1016){\displaystyle \left(\approx 1.1\times 10^{-16}\right)} in absolute value is:[24]forx0{\displaystyle x\geq 0},erfc(x)=(0.56418958354775629x+2.06955023132914151)(x2+2.71078540045147805x+5.80755613130301624x2+3.47954057099518960x+12.06166887286239555)(x2+3.47469513777439592x+12.07402036406381411x2+3.72068443960225092x+8.44319781003968454)(x2+4.00561509202259545x+9.30596659485887898x2+3.90225704029924078x+6.36161630953880464)(x2+5.16722705817812584x+9.12661617673673262x2+4.03296893109262491x+5.13578530585681539)(x2+5.95908795446633271x+9.19435612886969243x2+4.11240942957450885x+4.48640329523408675)ex2{\displaystyle {\begin{aligned}\operatorname {erfc} \left(x\right)&=\left({\frac {0.56418958354775629}{x+2.06955023132914151}}\right)\left({\frac {x^{2}+2.71078540045147805x+5.80755613130301624}{x^{2}+3.47954057099518960x+12.06166887286239555}}\right)\\&\left({\frac {x^{2}+3.47469513777439592x+12.07402036406381411}{x^{2}+3.72068443960225092x+8.44319781003968454}}\right)\left({\frac {x^{2}+4.00561509202259545x+9.30596659485887898}{x^{2}+3.90225704029924078x+6.36161630953880464}}\right)\\&\left({\frac {x^{2}+5.16722705817812584x+9.12661617673673262}{x^{2}+4.03296893109262491x+5.13578530585681539}}\right)\left({\frac {x^{2}+5.95908795446633271x+9.19435612886969243}{x^{2}+4.11240942957450885x+4.48640329523408675}}\right)e^{-x^{2}}\\\end{aligned}}}and forx<0{\displaystyle x<0}erfc(x)=2erfc(x){\displaystyle \operatorname {erfc} \left(x\right)=2-\operatorname {erfc} \left(-x\right)}

A simple approximation for real-valued arguments can be done throughhyperbolic functions:erf(x)z(x)=tanh(2π(x+11123x3)){\displaystyle \operatorname {erf} \left(x\right)\approx z(x)=\tanh \left({\frac {2}{\sqrt {\pi }}}\left(x+{\frac {11}{123}}x^{3}\right)\right)}which keeps the absolute difference|erf(x)z(x)|<0.000358,x{\displaystyle \left|\operatorname {erf} \left(x\right)-z(x)\right|<0.000358,\,\forall x}.

Since the error function and the Gaussian Q-function are closely related through the identityerfc(x)=2Q(2x){\displaystyle \operatorname {erfc} (x)=2Q({\sqrt {2}}x)} or equivalentlyQ(x)=12erfc(x2){\displaystyle Q(x)={\frac {1}{2}}\operatorname {erfc} \left({\frac {x}{\sqrt {2}}}\right)}, bounds developed for the Q-function can be adapted to approximate the complementary error function. A pair of tight lower and upper bounds on the Gaussian Q-function for positive argumentsx[0,){\displaystyle x\in [0,\infty )} was introduced by Abreu (2012)[25] based on a simplealgebraic expression with only two exponential terms:x012erfc(x2)112ex2+12π(x+1)ex2/2150ex2+12(x+1)ex2/2125e2x2+1x+1ex2erfc(x)16e2x2+122π(x+1)ex2{\displaystyle {\begin{aligned}x&\geq 0\\{\frac {1}{2}}\operatorname {erfc} \left({\frac {x}{\sqrt {2}}}\right)&\geq {\frac {1}{12}}e^{-x^{2}}+{\frac {1}{{\sqrt {2\pi }}(x+1)}}e^{-x^{2}/2}\\&\leq {\frac {1}{50}}e^{-x^{2}}+{\frac {1}{2(x+1)}}e^{-x^{2}/2}\\{\frac {1}{25}}e^{-2x^{2}}+{\frac {1}{x+1}}e^{-x^{2}}\geq \operatorname {erfc} (x)&\geq {\frac {1}{6}}e^{-2x^{2}}+{\frac {1}{2{\sqrt {2\pi }}(x+1)}}e^{-x^{2}}\end{aligned}}}

These bounds stem from a unified formQB(x;a,b)=exp(x2)a+exp(x2/2)b(x+1),{\displaystyle Q_{\mathrm {B} }(x;a,b)={\frac {\exp(-x^{2})}{a}}+{\frac {\exp(-x^{2}/2)}{b(x+1)}},} where the parametersa{\displaystyle a} andb{\displaystyle b} are selected to ensure the bounding properties: for the lower bound,aL=12{\displaystyle a_{\mathrm {L} }=12} andbL=2π{\displaystyle b_{\mathrm {L} }={\sqrt {2\pi }}}, and for the upper bound,aU=50{\displaystyle a_{\mathrm {U} }=50} andbU=2{\displaystyle b_{\mathrm {U} }=2}. These expressions maintain simplicity and tightness, providing a practical trade-off between accuracy and ease of computation. They are particularly valuable in theoretical contexts, such as communication theory over fading channels, where both functions frequently appear. Additionally, the original Q-function bounds can be extended toQn(x){\displaystyle Q^{n}(x)} for positive integersn{\displaystyle n} via thebinomial theorem, suggesting potential adaptability for powers oferfc(x){\displaystyle \operatorname {erfc} (x)}, though this is less commonly required in error function applications.

Table of values

[edit]
Further information:Interval estimation,Coverage probability, and68–95–99.7 rule
xerf(x)1 − erf(x)
001
0.020.0225645750.977435425
0.040.0451111060.954888894
0.060.0676215940.932378406
0.080.0900781260.909921874
0.10.1124629160.887537084
0.20.2227025890.777297411
0.30.3286267590.671373241
0.40.4283923550.571607645
0.50.5204998780.479500122
0.60.6038560910.396143909
0.70.6778011940.322198806
0.80.7421009650.257899035
0.90.7969082120.203091788
10.8427007930.157299207
1.10.8802050700.119794930
1.20.9103139780.089686022
1.30.9340079450.065992055
1.40.9522851200.047714880
1.50.9661051460.033894854
1.60.9763483830.023651617
1.70.9837904590.016209541
1.80.9890905020.010909498
1.90.9927904290.007209571
20.9953222650.004677735
2.10.9970205330.002979467
2.20.9981371540.001862846
2.30.9988568230.001143177
2.40.9993114860.000688514
2.50.9995930480.000406952
30.9999779100.000022090
3.50.9999992570.000000743

Related functions

[edit]

Complementary error function

[edit]
Plot of the error function erf(z) in the complex plane from−2 − 2i to2 + 2i

Thecomplementary error function, denotederfc, is defined aserfc(x)=1erf(x)=2πxet2dt=ex2erfcx(x),{\displaystyle {\begin{aligned}\operatorname {erfc} (x)&=1-\operatorname {erf} (x)\\&={\frac {2}{\sqrt {\pi }}}\int _{x}^{\infty }e^{-t^{2}}\,dt\\&=e^{-x^{2}}\operatorname {erfcx} (x),\end{aligned}}}which also defineserfcx, thescaled complementary error function[26] (which can be used instead oferfc to avoidarithmetic underflow[26][27]). Another form oferfcx forx ≥ 0 is known as Craig's formula, after its discoverer:[28]erfc(xx0)=2π0π2exp(x2sin2θ)dθ.{\displaystyle \operatorname {erfc} (x\mid x\geq 0)={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\exp \left(-{\frac {x^{2}}{\sin ^{2}\theta }}\right)\,d\theta .}This expression is valid only for positive values ofx, but can be used in conjunction witherfc(x) = 2 − erfc(−x) to obtainerfc(x) for negative values. This form is advantageous in that the range of integration is fixed and finite. An extension of this expression for theerfc of the sum of two non-negative variables is[29]erfc(x+yx,y0)=2π0π2exp(x2sin2θy2cos2θ)dθ.{\displaystyle \operatorname {erfc} (x+y\mid x,y\geq 0)={\frac {2}{\pi }}\int _{0}^{\frac {\pi }{2}}\exp \left(-{\frac {x^{2}}{\sin ^{2}\theta }}-{\frac {y^{2}}{\cos ^{2}\theta }}\right)\,d\theta .}

Imaginary error function

[edit]
Plot of the imaginary error function erfi(z) in the complex plane from−2 − 2i to2 + 2i

Theimaginary error function, denotederfi, is defined aserfi(x)=ierf(ix)=2π0xet2dt=2πex2D(x),{\displaystyle {\begin{aligned}\operatorname {erfi} (x)&=-i\operatorname {erf} (ix)\\&={\frac {2}{\sqrt {\pi }}}\int _{0}^{x}e^{t^{2}}\,dt\\&={\frac {2}{\sqrt {\pi }}}e^{x^{2}}D(x),\end{aligned}}}whereD(x) is theDawson function (which can be used instead oferfi to avoidarithmetic overflow[26]).

Despite the name "imaginary error function",erfi(x) is real whenx is real.

When the error function is evaluated for arbitrarycomplex argumentsz, the resultingcomplex error function is usually discussed in scaled form as theFaddeeva function:w(z)=ez2erfc(iz)=erfcx(iz).{\displaystyle w(z)=e^{-z^{2}}\operatorname {erfc} (-iz)=\operatorname {erfcx} (-iz).}

Cumulative distribution function

[edit]
The normal cumulative distribution function plotted in the complex plane

The error function is essentially identical to the standardnormal cumulative distribution function, denotedΦ, also namednorm(x) by some software languages[citation needed], as they differ only by scaling and translation. Indeed,Φ(x)=12πxet22dt=12(1+erf(x2))=12erfc(x2){\displaystyle {\begin{aligned}\Phi (x)&={\frac {1}{\sqrt {2\pi }}}\int _{-\infty }^{x}e^{\tfrac {-t^{2}}{2}}\,dt\\[6pt]&={\frac {1}{2}}\left(1+\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\right)\\[6pt]&={\frac {1}{2}}\operatorname {erfc} \left(-{\frac {x}{\sqrt {2}}}\right)\end{aligned}}}or rearranged forerf anderfc:erf(x)=2Φ(x2)1erfc(x)=2Φ(x2)=2(1Φ(x2)).{\displaystyle {\begin{aligned}\operatorname {erf} (x)&=2\Phi {\left(x{\sqrt {2}}\right)}-1\\[6pt]\operatorname {erfc} (x)&=2\Phi {\left(-x{\sqrt {2}}\right)}\\&=2\left(1-\Phi {\left(x{\sqrt {2}}\right)}\right).\end{aligned}}}

Consequently, the error function is also closely related to theQ-function, which is the tail probability of the standard normal distribution. The Q-function can be expressed in terms of the error function asQ(x)=1212erf(x2)=12erfc(x2).{\displaystyle {\begin{aligned}Q(x)&={\frac {1}{2}}-{\frac {1}{2}}\operatorname {erf} \left({\frac {x}{\sqrt {2}}}\right)\\&={\frac {1}{2}}\operatorname {erfc} \left({\frac {x}{\sqrt {2}}}\right).\end{aligned}}}

Theinverse ofΦ is known as thenormal quantile function, orprobit function and may be expressed in terms of the inverse error function asprobit(p)=Φ1(p)=2erf1(2p1)=2erfc1(2p).{\displaystyle \operatorname {probit} (p)=\Phi ^{-1}(p)={\sqrt {2}}\operatorname {erf} ^{-1}(2p-1)=-{\sqrt {2}}\operatorname {erfc} ^{-1}(2p).}

The standard normal cdf is used more often in probability and statistics, and the error function is used more often in other branches of mathematics.

The error function is a special case of theMittag-Leffler function, and can also be expressed as aconfluent hypergeometric function (Kummer's function):erf(x)=2xπM(12,32,x2).{\displaystyle \operatorname {erf} (x)={\frac {2x}{\sqrt {\pi }}}M\left({\tfrac {1}{2}},{\tfrac {3}{2}},-x^{2}\right).}

It has a simple expression in terms of theFresnel integral.[further explanation needed]

In terms of theregularized gamma functionP and theincomplete gamma function,erf(x)=sgn(x)P(12,x2)=sgn(x)πγ(12,x2).{\displaystyle \operatorname {erf} (x)=\operatorname {sgn}(x)\cdot P\left({\tfrac {1}{2}},x^{2}\right)={\frac {\operatorname {sgn}(x)}{\sqrt {\pi }}}\gamma {\left({\tfrac {1}{2}},x^{2}\right)}.}sgn(x) is thesign function.

Iterated integrals of the complementary error function

[edit]

The iterated integrals of the complementary error function are defined by[30]inerfc(z)=zin1erfc(ζ)dζi0erfc(z)=erfc(z)i1erfc(z)=ierfc(z)=1πez2zerfc(z)i2erfc(z)=14(erfc(z)2zierfc(z)){\displaystyle {\begin{aligned}i^{n}\!\operatorname {erfc} (z)&=\int _{z}^{\infty }i^{n-1}\!\operatorname {erfc} (\zeta )\,d\zeta \\[6pt]i^{0}\!\operatorname {erfc} (z)&=\operatorname {erfc} (z)\\i^{1}\!\operatorname {erfc} (z)&=\operatorname {ierfc} (z)={\frac {1}{\sqrt {\pi }}}e^{-z^{2}}-z\operatorname {erfc} (z)\\i^{2}\!\operatorname {erfc} (z)&={\tfrac {1}{4}}\left(\operatorname {erfc} (z)-2z\operatorname {ierfc} (z)\right)\\\end{aligned}}}

The general recurrence formula is2ninerfc(z)=in2erfc(z)2zin1erfc(z){\displaystyle 2n\cdot i^{n}\!\operatorname {erfc} (z)=i^{n-2}\!\operatorname {erfc} (z)-2z\cdot i^{n-1}\!\operatorname {erfc} (z)}

They have the power seriesinerfc(z)=j=0(z)j2njj!Γ(1+nj2),{\displaystyle i^{n}\!\operatorname {erfc} (z)=\sum _{j=0}^{\infty }{\frac {(-z)^{j}}{2^{n-j}j!\,\Gamma \left(1+{\frac {n-j}{2}}\right)}},}from which follow the symmetry propertiesi2merfc(z)=i2merfc(z)+q=0mz2q22(mq)1(2q)!(mq)!{\displaystyle i^{2m}\!\operatorname {erfc} (-z)=-i^{2m}\!\operatorname {erfc} (z)+\sum _{q=0}^{m}{\frac {z^{2q}}{2^{2(m-q)-1}(2q)!(m-q)!}}}andi2m+1erfc(z)=i2m+1erfc(z)+q=0mz2q+122(mq)1(2q+1)!(mq)!.{\displaystyle i^{2m+1}\!\operatorname {erfc} (-z)=i^{2m+1}\!\operatorname {erfc} (z)+\sum _{q=0}^{m}{\frac {z^{2q+1}}{2^{2(m-q)-1}(2q+1)!(m-q)!}}.}

Implementations

[edit]

As real function of a real argument

[edit]

As complex function of a complex argument

[edit]
  • libcerf, numeric C library for complex error functions, provides the complex functionscerf,cerfc,cerfcx and the real functionserfi,erfcx with approximately 13–14 digits precision, based on theFaddeeva function as implemented in theMIT Faddeeva Package

References

[edit]
  1. ^Andrews, Larry C. (1998).Special functions of mathematics for engineers. SPIE Press. p. 110.ISBN 9780819426161.
  2. ^Whittaker, Edmund Taylor;Watson, George Neville (2021).Moll, Victor Hugo (ed.).A Course of Modern Analysis (5th revised ed.).Cambridge University Press. p. 358.ISBN 978-1-316-51893-9.
  3. ^Glaisher, James Whitbread Lee (July 1871)."On a class of definite integrals".London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4.42 (277):294–302.doi:10.1080/14786447108640568. Retrieved6 December 2017.
  4. ^Glaisher, James Whitbread Lee (September 1871)."On a class of definite integrals. Part II".London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science. 4.42 (279):421–436.doi:10.1080/14786447108640600. Retrieved6 December 2017.
  5. ^Weisstein, Eric W."Erf".MathWorld.
  6. ^Schöpf, H. M.; Supancic, P. H. (2014)."On Bürmann's Theorem and Its Application to Problems of Linear and Nonlinear Heat Transfer and Diffusion".The Mathematica Journal.16.doi:10.3888/tmj.16-11.
  7. ^Weisstein, Eric W."Bürmann's Theorem".MathWorld.
  8. ^Dominici, Diego (2006). "Asymptotic analysis of the derivatives of the inverse error function".arXiv:math/0607230.
  9. ^Bergsma, Wicher (2006). "On a new correlation coefficient, its orthogonal decomposition and associated tests of independence".arXiv:math/0604627.
  10. ^Pierre-Simon Laplace,Traité de mécanique céleste, tome 4 (1805), livre X, page 255.
  11. ^Cuyt, Annie A. M.; Petersen, Vigdis B.; Verdonk, Brigitte; Waadeland, Haakon; Jones, William B. (2008).Handbook of Continued Fractions for Special Functions. Springer-Verlag.ISBN 978-1-4020-6948-2.
  12. ^Schlömilch, Oskar Xavier (1859)."Ueber facultätenreihen".Zeitschrift für Mathematik und Physik (in German).4:390–415.
  13. ^Nielson, Niels (1906).Handbuch der Theorie der Gammafunktion (in German). Leipzig: B. G. Teubner. p. 283 Eq. 3. Retrieved4 December 2017.
  14. ^Chiani, M.; Dardari, D.; Simon, M.K. (2003)."New Exponential Bounds and Approximations for the Computation of Error Probability in Fading Channels"(PDF).IEEE Transactions on Wireless Communications.2 (4):840–845.Bibcode:2003ITWC....2..840C.CiteSeerX 10.1.1.190.6761.doi:10.1109/TWC.2003.814350.
  15. ^Tanash, I.M.; Riihonen, T. (2020). "Global minimax approximations and bounds for the Gaussian Q-function by sums of exponentials".IEEE Transactions on Communications.68 (10):6514–6524.arXiv:2007.06939.Bibcode:2020ITCom..68.6514T.doi:10.1109/TCOMM.2020.3006902.S2CID 220514754.
  16. ^Tanash, I.M.; Riihonen, T. (2020)."Coefficients for Global Minimax Approximations and Bounds for the Gaussian Q-Function by Sums of Exponentials [Data set]".Zenodo.doi:10.5281/zenodo.4112978.
  17. ^Karagiannidis, G. K.; Lioumpas, A. S. (2007)."An improved approximation for the Gaussian Q-function"(PDF).IEEE Communications Letters.11 (8):644–646.doi:10.1109/LCOMM.2007.070470.S2CID 4043576.
  18. ^Tanash, I.M.; Riihonen, T. (2021). "Improved coefficients for the Karagiannidis–Lioumpas approximations and bounds to the Gaussian Q-function".IEEE Communications Letters.25 (5):1468–1471.arXiv:2101.07631.Bibcode:2021IComL..25.1468T.doi:10.1109/LCOMM.2021.3052257.S2CID 231639206.
  19. ^Chang, Seok-Ho;Cosman, Pamela C.; Milstein, Laurence B. (November 2011)."Chernoff-Type Bounds for the Gaussian Error Function".IEEE Transactions on Communications.59 (11):2939–2944.Bibcode:2011ITCom..59.2939C.doi:10.1109/TCOMM.2011.072011.100049.S2CID 13636638.
  20. ^Winitzki, Sergei (2003)."Uniform approximations for transcendental functions".Computational Science and Its Applications – ICCSA 2003. Lecture Notes in Computer Science. Vol. 2667. Springer, Berlin. pp. 780–789.doi:10.1007/3-540-44839-X_82.ISBN 978-3-540-40155-1.
  21. ^Zeng, Caibin; Chen, Yang Cuan (2015). "Global Padé approximations of the generalized Mittag-Leffler function and its inverse".Fractional Calculus and Applied Analysis.18 (6):1492–1506.arXiv:1310.5592.doi:10.1515/fca-2015-0086.S2CID 118148950.Indeed, Winitzki [32] provided the so-called global Padé approximation
  22. ^Winitzki, Sergei (6 February 2008)."A handy approximation for the error function and its inverse".
  23. ^Press, William H. (1992).Numerical Recipes in Fortran 77: The Art of Scientific Computing. Cambridge University Press. p. 214.ISBN 0-521-43064-X.
  24. ^Dia, Yaya D. (2023)."Approximate Incomplete Integrals, Application to Complementary Error Function".SSRN Electronic Journal.doi:10.2139/ssrn.4487559.ISSN 1556-5068.
  25. ^Abreu, Giuseppe (2012). "Very Simple Tight Bounds on the Q-Function".IEEE Transactions on Communications.60 (9):2415–2420.Bibcode:2012ITCom..60.2415A.doi:10.1109/TCOMM.2012.080612.110075.
  26. ^abcCody, W. J. (March 1993),"Algorithm 715: SPECFUN—A portable FORTRAN package of special function routines and test drivers"(PDF),ACM Trans. Math. Softw.,19 (1):22–32,CiteSeerX 10.1.1.643.4394,doi:10.1145/151271.151273,S2CID 5621105
  27. ^Zaghloul, M. R. (1 March 2007), "On the calculation of the Voigt line profile: a single proper integral with a damped sine integrand",Monthly Notices of the Royal Astronomical Society,375 (3):1043–1048,Bibcode:2007MNRAS.375.1043Z,doi:10.1111/j.1365-2966.2006.11377.x
  28. ^John W. Craig,A new, simple and exact result for calculating the probability of error for two-dimensional signal constellationsArchived 3 April 2012 at theWayback Machine, Proceedings of the 1991 IEEE Military Communication Conference, vol. 2, pp. 571–575.
  29. ^Behnad, Aydin (2020). "A Novel Extension to Craig's Q-Function Formula and Its Application in Dual-Branch EGC Performance Analysis".IEEE Transactions on Communications.68 (7):4117–4125.Bibcode:2020ITCom..68.4117B.doi:10.1109/TCOMM.2020.2986209.S2CID 216500014.
  30. ^Carslaw, H. S.;Jaeger, J. C. (1959).Conduction of Heat in Solids (2nd ed.). Oxford University Press. p. 484.ISBN 978-0-19-853368-9.{{cite book}}:ISBN / Date incompatibility (help)
  31. ^"math.h - mathematical declarations".opengroup.org. 2018. Retrieved21 April 2023.
  32. ^"Special Functions – GSL 2.7 documentation".

Further reading

[edit]

External links

[edit]
International
National
Retrieved from "https://en.wikipedia.org/w/index.php?title=Error_function&oldid=1335748492"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp