Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Equiangular polygon

From Wikipedia, the free encyclopedia
Polygon with equally angled vertices
Example equiangular polygons
DirectIndirectSkew

Arectangle,⟨4⟩, is a convexdirect equiangular polygon, containing four 90° internal angles.

A concaveindirect equiangular polygon,⟨6-2⟩, like this hexagon, counterclockwise, has five left turns and one right turn, like thistetromino.

Askew polygon has equal angles off a plane, like this skew octagon alternating red and blue edges on acube.
DirectIndirectCounter-turned

Amulti-turning equiangular polygon can be direct, like this octagon,⟨8/2⟩, has 8 90° turns, totaling 720°.

A concave indirect equiangular polygon,⟨5-2⟩, counterclockwise has 4 left turns and one right turn.
(-1.2.4.3.2)60°

An indirect equiangular hexagon,⟨6-6⟩90° with 3 left turns, 3 right turns, totaling 0°.

InEuclidean geometry, anequiangular polygon is apolygon whose vertex angles are equal. If the lengths of the sides are also equal (that is, if it is alsoequilateral) then it is aregular polygon.Isogonal polygons are equiangular polygons which alternate two edge lengths.

For clarity, aplanar equiangular polygon can be calleddirect orindirect. Adirect equiangular polygon has all angles turning in the same direction in a plane and can include multipleturns.Convex equiangular polygons are always direct. Anindirect equiangular polygon can include angles turning right or left in any combination. Askew equiangular polygon may beisogonal, but can't be considered direct since it is nonplanar.

Aspirolateralnθ is a special case of anequiangular polygon with a set ofn integer edge lengths repeating sequence until returning to the start, with vertex internal angles θ.

Construction

[edit]

Anequiangular polygon can be constructed from aregular polygon orregular star polygon where edges are extended as infinitelines. Each edges can be independently moved perpendicular to the line's direction. Vertices represent the intersection point between pairs of neighboring line. Each moved line adjusts its edge-length and the lengths of its two neighboring edges.[1] If edges are reduced to zero length, the polygon becomes degenerate, or if reduced tonegative lengths, this will reverse the internal and external angles.

For an even-sided direct equiangular polygon, with internal angles θ°, moving alternate edges can invert all vertices intosupplementary angles, 180-θ°. Odd-sided direct equiangular polygons can only be partially inverted, leaving a mixture of supplementary angles.

Every equiangular polygon can be adjusted in proportions by this construction and still preserve equiangular status.


This convexdirect equiangular hexagon,⟨6⟩, is bounded by 6lines with 60° angle between. Each line can be moved perpendicular to its direction.

This concaveindirect equiangular hexagon,⟨6-2⟩, is also bounded by 6 lines with 90° angle between, each line moved independently, moving vertices as new intersections.

Equiangular polygon theorem

[edit]

For aconvex equiangularp-gon, eachinternal angle is 180(1−2/p)°; this is theequiangular polygon theorem.

For a direct equiangularp/qstar polygon,densityq, each internal angle is 180(1−2q/p)°, with1 < 2q <p. Forw = gcd(p,q) > 1, this represents aw-woundp/w/q/w star polygon, which is degenerate for the regular case.

A concaveindirect equiangular(pr+pl)-gon, withpr right turn vertices andpl left turn vertices, will have internal angles of180(1−2/|prpl|))°, regardless of their sequence. Anindirect star equiangular(pr+pl)-gon, withpr right turn vertices andpl left turn vertices andq totalturns, will have internal angles of180(1−2q/|prpl|))°, regardless of their sequence. An equiangular polygon with the same number of right and left turns has zero total turns, and has no constraints on its angles.

Notation

[edit]

Every direct equiangularp-gon can be given a notationp orp/q, likeregular polygons {p} andregular star polygons {p/q}, containingp vertices, and stars havingdensityq.

Convex equiangularp-gonsp have internal angles 180(1−2/p)°, while direct star equiangular polygons,p/q, have internal angles 180(1−2q/p)°.

A concave indirect equiangularp-gon can be given the notationp−2c, withc counter-turn vertices. For example,⟨6−2⟩ is a hexagon with 90° internal angles of the difference,⟨4⟩, 1 counter-turned vertex. A multiturn indirect equilateralp-gon can be given the notationp−2c/q withc counter turn vertices, andq totalturns. An equiangular polygon <pp> is ap-gon with undefined internal anglesθ, but can be expressed explicitly asppθ.

Other properties

[edit]

Viviani's theorem holds for equiangular polygons:[2]

The sum of distances from an interior point to the sides of an equiangular polygon does not depend on the location of the point, and is that polygon's invariant.

Acyclic polygon is equiangular if and only if the alternate sides are equal (that is, sides 1, 3, 5, ... are equal and sides 2, 4, ... are equal). Thus ifn is odd, a cyclic polygon is equiangular if and only if it is regular.[3]

For primep, every integer-sided equiangularp-gon is regular. Moreover, every integer-sided equiangularpk-gon hasp-foldrotational symmetry.[4]

An ordered set of side lengths(a1,,an){\displaystyle (a_{1},\dots ,a_{n})} gives rise to an equiangularn-gon if and only if either of two equivalent conditions holds for the polynomiala1+a2x++an1xn2+anxn1:{\displaystyle a_{1}+a_{2}x+\cdots +a_{n-1}x^{n-2}+a_{n}x^{n-1}:} it equals zero at the complex valuee2πi/n;{\displaystyle e^{2\pi i/n};} it is divisible byx22xcos(2π/n)+1.{\displaystyle x^{2}-2x\cos(2\pi /n)+1.}[5]

Direct equiangular polygons by sides

[edit]

Direct equiangular polygons can be regular, isogonal, or lower symmetries. Examples for <p/q> are grouped into sections byp and subgrouped by densityq.

Equiangular triangles

[edit]

Equiangular triangles must be convex and have 60° internal angles. It is anequilateral triangle and aregular triangle,⟨3⟩={3}. The only degree of freedom is edge-length.

  • Regular, {3}, r6
    Regular, {3}, r6

Equiangular quadrilaterals

[edit]
A rectangle dissected into a 2×3 array of squares[6]

Directequiangular quadrilaterals have 90° internal angles. The only equiangular quadrilaterals arerectangles,⟨4⟩, andsquares, {4}.

An equiangular quadrilateral with integer side lengths may be tiled byunit squares.[6]

Equiangular pentagons

[edit]

Directequiangular pentagons,⟨5⟩ and⟨5/2⟩, have 108° and 36° internal angles respectively.

108° internal angle from an equiangularpentagon,⟨5⟩

Equiangular pentagons can beregular, have bilateral symmetry, or no symmetry.

  • Regular, r10
    Regular, r10
  • Bilateral symmetry, i2
    Bilateral symmetry, i2
  • No symmetry, a1
    No symmetry, a1
36° internal angles from an equiangularpentagram,⟨5/2⟩

Equiangular hexagons

[edit]
An equiangular hexagon with 1:2 edge length ratios, with equilateral triangles.[6] This isspirolateral 2120°.

Directequiangular hexagons,⟨6⟩ and⟨6/2⟩, have 120° and 60° internal angles respectively.

120° internal angles of an equiangularhexagon,⟨6⟩

An equiangularhexagon with integer side lengths may be tiled by unitequilateral triangles.[6]

  • Regular, {6}, r12
    Regular, {6}, r12
  • Spirolateral (1,2)120°, p6
    Spirolateral (1,2)120°, p6
  • Spirolateral (1…3)120°, g2
    Spirolateral (1…3)120°, g2
  • Spirolateral (1,2,2)120°, i4
    Spirolateral (1,2,2)120°, i4
  • Spirolateral (1,2,2,2,1,3)120°, p2
    Spirolateral (1,2,2,2,1,3)120°, p2
60° internal angles of an equiangular double-wound triangle,⟨6/2⟩
  • Regular, degenerate, r6
    Regular, degenerate, r6
  • Spirolateral (1,3)60°, p6
    Spirolateral (1,3)60°, p6
  • Spirolateral (1,2)60°, p6
    Spirolateral (1,2)60°, p6
  • Spirolateral (2,3)60°, p6
    Spirolateral (2,3)60°, p6
  • Spirolateral (1,2,3,4,3,2)60°, p2
    Spirolateral (1,2,3,4,3,2)60°, p2

Equiangular heptagons

[edit]

Directequiangular heptagons,⟨7⟩,⟨7/2⟩, and⟨7/3⟩ have 128 4/7°, 77 1/7° and 25 5/7° internal angles respectively.

128.57° internal angles of an equiangularheptagon,⟨7⟩
  • Regular, {7}, r14
    Regular, {7}, r14
  • Irregular, i2
    Irregular, i2
77.14° internal angles of an equiangularheptagram,⟨7/2⟩
  • Regular, r14
    Regular, r14
  • Irregular, i2
    Irregular, i2
25.71° internal angles of an equiangularheptagram,⟨7/3⟩
  • Regular, r14
    Regular, r14
  • Irregular, i2
    Irregular, i2

Equiangular octagons

[edit]

Directequiangular octagons,⟨8⟩,⟨8/2⟩ and⟨8/3⟩, have 135°, 90° and 45° internal angles respectively.

135° internal angles from an equiangularoctagon,⟨8⟩
  • Regular, r16
    Regular, r16
  • Spirolateral (1,2)135°, p8
    Spirolateral (1,2)135°, p8
  • Spirolateral (1…4)135°, g2
    Spirolateral (1…4)135°, g2
  • Unequal truncated square, p2
    Unequal truncated square, p2
90° internal angles from an equiangular double-woundsquare,⟨8/2⟩
  • Regular degenerate, r8
    Regular degenerate, r8
  • Spirolateral (1,2,2,3,3,2,2,1)90°, d2
    Spirolateral (1,2,2,3,3,2,2,1)90°, d2
  • Spirolateral (2,1,3,2,2,3,1,2)90°, d2
    Spirolateral (2,1,3,2,2,3,1,2)90°, d2
45° internal angles from an equiangularoctagram,⟨8/3⟩
  • Regular, r16
    Regular, r16
  • Isogonal, p8
    Isogonal, p8
  • Isogonal, p8
    Isogonal, p8
  • Spirolateral, (1,2)45°, p8
    Spirolateral, (1,2)45°, p8
  • Isogonal, p8
    Isogonal, p8
  • Spirolateral (1…4)45°, g2
    Spirolateral (1…4)45°, g2

Equiangular enneagons

[edit]

Directequiangular enneagons,⟨9⟩,⟨9/2⟩,⟨9/3⟩, and⟨9/4⟩ have 140°, 100°, 60° and 20° internal angles respectively.

140° internal angles from an equiangular enneagon⟨9⟩
  • Regular, r18
    Regular, r18
  • Spirolateral (1,1,3)140°, i6
    Spirolateral (1,1,3)140°, i6
100° internal angles from an equiangularenneagram,⟨9/2⟩
  • Regular {9/2}, p9
    Regular {9/2}, p9
  • Spirolateral (1,1,5)100°, i6
    Spirolateral (1,1,5)100°, i6
  • Spirolateral 3100°, g3
    Spirolateral 3100°, g3
60° internal angles from an equiangulartriple-wound triangle,⟨9/3⟩
  • Regular, degenerate, r6
    Regular, degenerate, r6
  • Irregular, a1
    Irregular, a1
  • Irregular, a1
    Irregular, a1
  • Irregular, a1
    Irregular, a1
20° internal angles from an equiangularenneagram,⟨9/4⟩

Equiangular decagons

[edit]

Directequiangular decagons,⟨10⟩,⟨10/2⟩,⟨10/3⟩,⟨10/4⟩, have 144°, 108°, 72° and 36° internal angles respectively.

144° internal angles from an equiangulardecagon⟨10⟩
  • Regular, r20
    Regular, r20
  • Spirolateral (1,2)144°, p10
    Spirolateral (1,2)144°, p10
  • Spirolateral (1…5)144°, g2
    Spirolateral (1…5)144°, g2
108° internal angles from an equiangular double-woundpentagon⟨10/2⟩
  • Regular, degenerate
    Regular, degenerate
  • Spirolateral (1,2)108°, p10
    Spirolateral (1,2)108°, p10
  • Irregular, p2
    Irregular, p2
72° internal angles from an equiangulardecagram⟨10/3⟩
  • Regular {10/3}, r20
    Regular {10/3}, r20
  • Isogonal, p10
    Isogonal, p10
  • Spirolateral (1,2)72°, p10
    Spirolateral (1,2)72°, p10
  • Irregular, i4
    Irregular, i4
  • Spirolateral (1…5)72°, g2
    Spirolateral (1…5)72°, g2
36° internal angles from an equiangular double-woundpentagram⟨10/4⟩
  • Regular, degenerate, r10
    Regular, degenerate, r10
  • Spirolateral (1,2)36°, p10
    Spirolateral (1,2)36°, p10
  • Isogonal, p10
    Isogonal, p10
  • Isogonal, p10
    Isogonal, p10
  • Irregular, p2
    Irregular, p2
  • Irregular, p2
    Irregular, p2
  • Irregular, p2
    Irregular, p2

Equiangular hendecagons

[edit]

Directequiangular hendecagons,⟨11⟩,⟨11/2⟩,⟨11/3⟩,⟨11/4⟩, and⟨11/5⟩ have 147 3/11°, 114 6/11°, 81 9/11°, 49 1/11°, and 16 4/11° internal angles respectively.

147° internal angles from an equiangularhendecagon,⟨11⟩
  • Regular, {11}, r22
    Regular, {11}, r22
114° internal angles from an equiangularhendecagram,⟨11/2⟩
  • Regular {11/2}, r22
    Regular {11/2}, r22
81° internal angles from an equiangularhendecagram,⟨11/3⟩
  • Regular {11/3}, r22
    Regular {11/3}, r22
49° internal angles from an equiangularhendecagram,⟨11/4⟩
  • Regular {11/4}, r22
    Regular {11/4}, r22
16° internal angles from an equiangularhendecagram,⟨11/5⟩
  • Regular {11/5}, r22
    Regular {11/5}, r22

Equiangular dodecagons

[edit]

Directequiangular dodecagons,⟨12⟩,⟨12/2⟩,⟨12/3⟩,⟨12/4⟩, and⟨12/5⟩ have 150°, 120°, 90°, 60°, and 30° internal angles respectively.

150° internal angles from an equiangulardodecagon,⟨12⟩

Convex solutions with integer edge lengths may be tiled bypattern blocks, squares, equilateral triangles, and 30°rhombi.[6]

  • Regular, {12}, r24
    Regular, {12}, r24
  • Isogonal, p12
    Isogonal, p12
  • Spirolateral (1,2)150°, p12
    Spirolateral (1,2)150°, p12
  • Spirolateral (1…3)150°, g4
    Spirolateral (1…3)150°, g4
  • Spirolateral (1…4)150°, g3
    Spirolateral (1…4)150°, g3
  • Spirolateral (1…6)150°, g2
    Spirolateral (1…6)150°, g2
120° internal angles from an equiangulardouble-woundhexagon,⟨12/2⟩
  • Regular degenerate, r12
    Regular degenerate, r12
  • Spirolateral, (1…4)120°, g3
    Spirolateral, (1…4)120°, g3
  • Irregular, d2
    Irregular, d2
  • Irregular, d2
    Irregular, d2
90° internal angles from an equiangulartriple-woundsquare,⟨12/3⟩
  • Regular, degenerate, r8
    Regular, degenerate, r8
  • Spirolateral (1…3)90°, g2
    Spirolateral (1…3)90°, g2
  • Spirolateral (2…4)90°, g4
    Spirolateral (2…4)90°, g4
  • Spirolateral (1,1,3)90°, i8
    Spirolateral (1,1,3)90°, i8
  • Spirolateral (1,2,2)90°, i8
    Spirolateral (1,2,2)90°, i8
  • Spirolateral (1…6)90°, g2
    Spirolateral (1…6)90°, g2
  • Irregular, a1
    Irregular, a1
60° internal angles from an equiangularquadruple-woundtriangle,⟨12/4⟩
  • Regular, degenerate, r6
    Regular, degenerate, r6
  • Spirolateral (1,3,5,1)60°, p6
    Spirolateral (1,3,5,1)60°, p6
  • Spirolateral (1…4)60°, g3
    Spirolateral (1…4)60°, g3
  • Irregular, a1
    Irregular, a1
30° internal angles from an equiangulardodecagram,⟨12/5⟩
  • Regular {12/5}, r24
    Regular {12/5}, r24
  • Isogonal, p12
    Isogonal, p12
  • Spirolateral (1,2)30°, p12
    Spirolateral (1,2)30°, p12
  • Spirolateral (1…3)30°, g4
    Spirolateral (1…3)30°, g4
  • Spirolateral (1…4)30°, g3
    Spirolateral (1…4)30°, g3
  • Spirolateral (1…6)30°, g2
    Spirolateral (1…6)30°, g2

Equiangular tetradecagons

[edit]

Directequiangular tetradecagons,⟨14⟩,⟨14/2⟩,⟨14/3⟩,⟨14/4⟩, and⟨14/5⟩,⟨14/6⟩, have 154 2/7°, 128 4/7°, 102 6/7°, 77 1/7°, 51 3/7° and 25 5/7° internal angles respectively.

154.28° internal angles from an equiangulartetradecagon,⟨14⟩
  • Regular {14}, r28
    Regular {14}, r28
  • Isogonal, t{7}, p14
    Isogonal, t{7}, p14
128.57° internal angles from an equiangular double-wound regularheptagon,⟨14/2⟩
  • Regular degenerate, r14
    Regular degenerate, r14
  • Isogonal, t{7/2}, p14
    Isogonal, t{7/2}, p14
  • Spirolateral 2128.57°
    Spirolateral 2128.57°
102.85° internal angles from an equiangulartetradecagram,⟨14/3⟩
  • Regular {14/3}, r28
    Regular {14/3}, r28
  • Isogonal t{7/3}, p14
    Isogonal t{7/3}, p14
77.14° internal angles from an equiangular double-woundheptagram⟨14/4⟩
  • Regular degenerate, r14
    Regular degenerate, r14
  • Isogonal, p14
    Isogonal, p14
  • Isogonal, p14
    Isogonal, p14
  • Spirolateral 277.14°
    Spirolateral 277.14°
51.43° internal angles from an equiangulartetradecagram,⟨14/5⟩
  • Regular {14/5}, r28
    Regular {14/5}, r28
  • Isogonal, p14
    Isogonal, p14
  • Isogonal, p14
    Isogonal, p14
25.71° internal angles from an equiangular double-woundheptagram,⟨14/6⟩
  • Regular degenerate, r14
    Regular degenerate, r14
  • Isogonal, p14
    Isogonal, p14
  • Isogonal, p14
    Isogonal, p14
  • Isogonal, p14
    Isogonal, p14
  • Irregular, d2
    Irregular, d2

Equiangular pentadecagons

[edit]

Directequiangular pentadecagons,⟨15⟩,⟨15/2⟩,⟨15/3⟩,⟨15/4⟩,⟨15/5⟩,⟨15/6⟩, and⟨15/7⟩, have 156°, 132°, 108°, 84°, 60° and 12° internal angles respectively.

156° internal angles from an equiangular pentadecagon,⟨15⟩
  • Regular, {15}, r30
    Regular, {15}, r30
132° internal angles from an equiangularpentadecagram,⟨15/2⟩
  • Regular, {15/2}, r30
    Regular, {15/2}, r30
108° internal angles from an equiangular triple-wound pentagon,⟨15/3⟩
84° internal angles from an equiangular pentadecagram,⟨15/4⟩
  • Regular, {15/4}, r30
    Regular, {15/4}, r30
60° internal angles from an equiangular 5-woundtriangle,⟨15/5⟩
  • Regular, degenerate, r6
    Regular, degenerate, r6
  • Irregular, a1
    Irregular, a1
36° internal angles from an equiangular triple-woundpentagram,⟨15/6⟩
  • Regular, degenerate, r10
    Regular, degenerate, r10
  • Irregular, a1
    Irregular, a1
  • Spirolateral (1…4)36°, g5
    Spirolateral (1…4)36°, g5
12° internal angles from an equiangular pentadecagram,⟨15/7⟩
  • Regular, {15/7}, r30
    Regular, {15/7}, r30

Equiangular hexadecagons

[edit]

Directequiangular hexadecagons,⟨16⟩,⟨16/2⟩,⟨16/3⟩,⟨16/4⟩,⟨16/5⟩,⟨16/6⟩, and⟨16/7⟩, have 157.5°, 135°, 112.5°, 90°, 67.5° 45° and 22.5° internal angles respectively.

157.5° internal angles from an equiangularhexadecagon,⟨16⟩
  • Regular, {16}, r32
    Regular, {16}, r32
  • Isogonal, t{8}, p16
    Isogonal, t{8}, p16
  • Spirolateral (1…4)157.5°, g4
    Spirolateral (1…4)157.5°, g4
135° internal angles from an equiangular double-wound octagon,⟨16/2⟩
  • Regular, degenerate, r16
    Regular, degenerate, r16
  • Irregular, p16
    Irregular, p16
112.5° internal angles from an equiangularhexadecagram,⟨16/3⟩
  • Regular, {16/3}, r32
    Regular, {16/3}, r32
90° internal angles from an equiangular 4-wound square,⟨16/4⟩
  • Regular, degenerate, r8
    Regular, degenerate, r8
  • Irregular, a1
    Irregular, a1
67.5° internal angles from an equiangularhexadecagram,⟨16/5⟩
  • Regular, {16/5}, r32
    Regular, {16/5}, r32
45° internal angles from an equiangular double-wound regularoctagram,⟨16/6⟩
22.5° internal angles from an equiangularhexadecagram,⟨16/7⟩
  • Regular, {16/7}, r32
    Regular, {16/7}, r32
  • Isogonal, p16
    Isogonal, p16

Equiangular octadecagons

[edit]

Directequiangular octadecagons, <18},⟨18/2⟩,⟨18/3⟩,⟨18/4⟩,⟨18/5⟩,⟨18/6⟩,⟨18/7⟩, and⟨18/8⟩, have 160°, 140°, 120°, 100°, 80°, 60°, 40° and 20° internal angles respectively.

160° internal angles from an equiangularoctadecagon,⟨18⟩
  • Regular, {18}, r36
    Regular, {18}, r36
  • Isogonal, t{9}, p18
    Isogonal, t{9}, p18
140° internal angles from an equiangular double-woundenneagon,⟨18/2⟩
120° internal angles of an equiangular 3-wound hexagon⟨18/3⟩
  • Regular, degenerate, r18
    Regular, degenerate, r18
  • irregular, a1
    irregular, a1
100° internal angles of an equiangular double-woundenneagram⟨18/4⟩
80° internal angles of an equiangularoctadecagram {18/5}
  • Regular, {18/5}, r36
    Regular, {18/5}, r36
60° internal angles of an equiangular 6-wound triangle⟨18/6⟩
  • Regular, degenerate, r6
    Regular, degenerate, r6
  • irregular, a1
    irregular, a1
40° internal angles of an equiangularoctadecagram⟨18/7⟩
  • Regular, {18/7}, r36
    Regular, {18/7}, r36
  • Isogonal, p18
    Isogonal, p18
  • Isogonal, p18
    Isogonal, p18
  • Isogonal, p18
    Isogonal, p18
20° internal angles of an equiangular double-woundenneagram⟨18/8⟩
  • Regular, degenerate, r18
    Regular, degenerate, r18
  • Isogonal, p18
    Isogonal, p18
  • Isogonal, p18
    Isogonal, p18
  • Isogonal, p18
    Isogonal, p18
  • Isogonal, p18
    Isogonal, p18
  • Spirolateral 220°, p18
    Spirolateral 220°, p18
  • Spirolateral 620°, g3
    Spirolateral 620°, g3

Equiangular icosagons

[edit]

Directequiangular icosagon,⟨20⟩,⟨20/3⟩,⟨20/4⟩,⟨20/5⟩,⟨20/6⟩,⟨20/7⟩, and⟨20/9⟩, have 162°, 126°, 108°, 90°, 72°, 54° and 18° internal angles respectively.

162° internal angles from an equiangularicosagon,⟨20⟩
144° internal angles from an equiangular double-wounddecagon,⟨20/2⟩
126° internal angles from an equiangularicosagram,⟨20/3⟩
108° internal angles from an equiangular 4-woundpentagon,⟨20/4⟩
  • Regular degenerate, r10
    Regular degenerate, r10
  • Spirolateral (1…4)108°, g5
    Spirolateral (1…4)108°, g5
  • Irregular, a1
    Irregular, a1
90° internal angles from an equiangular 5-woundsquare,⟨20/5⟩
72° internal angles from an equiangular double-wounddecagram,⟨20/6⟩
  • Regular degenerate, r20
    Regular degenerate, r20
  • Spirolateral (1,2)72°, p10
    Spirolateral (1,2)72°, p10
  • Spirolateral (1…4)72°, g5
    Spirolateral (1…4)72°, g5
54° internal angles from an equiangularicosagram,⟨20/7⟩
  • Regular {20/7}, r40
    Regular {20/7}, r40
  • Isogonal, p20
    Isogonal, p20
  • Isogonal, p20
    Isogonal, p20
  • Isogonal, p20
    Isogonal, p20
36° internal angles from an equiangular quadruple-woundpentagram,⟨20/8⟩
  • Regular degenerate, r10
    Regular degenerate, r10
  • Spirolateral (1…4)36°, g5
    Spirolateral (1…4)36°, g5
  • irregular, a1
    irregular, a1
18° internal angles from an equiangularicosagram,⟨20/9⟩
  • Regular {20/9}, r40
    Regular {20/9}, r40
  • Isogonal, p20
    Isogonal, p20
  • Isogonal, p20
    Isogonal, p20
  • Isogonal, p20
    Isogonal, p20
  • Isogonal, p20
    Isogonal, p20

See also

[edit]

References

[edit]
  1. ^Marius Munteanu, Laura Munteanu,Rational Equiangular Polygons Applied Mathematics, Vol.4 No.10, October 2013
  2. ^Abboud, Elias (2010). "Viviani's Theorem and Its Extension".The College Mathematics Journal.41 (3):203–211.doi:10.4169/074683410x488683.
  3. ^De Villiers, Michael, "Equiangular cyclic and equilateral circumscribed polygons",Mathematical Gazette 95, March 2011, 102-107.
  4. ^McLean, K. Robin (2004). "A powerful algebraic tool for equiangular polygons".Mathematical Gazette (88):513–514.doi:10.1017/S002555720017617X.
  5. ^Bras-Amorós, M.; Pujol, M. (2015). "Side Lengths of Equiangular Polygons (as seen by a coding theorist)".The American Mathematical Monthly.122 (5):476–478.doi:10.4169/amer.math.monthly.122.5.476.
  6. ^abcdeBall, Derek (2002), "Equiangular polygons",The Mathematical Gazette,86 (507):396–407,doi:10.2307/3621131,JSTOR 3621131,S2CID 233358516.
  • Williams, R.The Geometrical Foundation of Natural Structure: A Source Book of Design. New York:Dover Publications, 1979. p. 32

External links

[edit]
Triangles
Quadrilaterals
By number
of sides
1–10 sides
11–20 sides
>20 sides
Star polygons
Classes
Retrieved from "https://en.wikipedia.org/w/index.php?title=Equiangular_polygon&oldid=1327375626"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp