| Epichloë | |
|---|---|
| "Choke disease":Epichloë typhina stroma onbluegrass | |
| Scientific classification | |
| Kingdom: | Fungi |
| Division: | Ascomycota |
| Class: | Sordariomycetes |
| Order: | Hypocreales |
| Family: | Clavicipitaceae |
| Tribe: | Balansiae |
| Genus: | Epichloë (Fr.)Tul. &C.Tul (1865) |
| Type species | |
| Epichloë typhina (Fr.) Tul. & C.Tul. (1865) | |
| Diversity | |
| 37 species, see text | |
| Synonyms[1] | |
| |
Epichloë is agenus ofascomycetefungi forming anendophyticsymbiosis withgrasses. Grasschoke disease is a symptom in grasses induced by someEpichloë species, which formspore-bearing mats (stromata) ontillers and suppress the development of theirhost plant'sinflorescence. For most of their life cycle however,Epichloë grow in the intercellular space of stems, leaves, inflorescences, and seeds of the grass plant without incurring symptoms of disease. In fact, they provide several benefits to their host, including the production of different herbivore-deterringalkaloids, increased stress resistance, and growth promotion.
Within the familyClavicipitaceae,Epichloë is embedded in a group of endophytic andplant pathogenic fungi, whose common ancestor probably derived from an animal pathogen. The genus includes both species with a sexually reproducing (teleomorphic) stage andasexual,anamorphic species. The latter were previously placed in theform genusNeotyphodium but included inEpichloë aftermolecular phylogenetics had shown asexual and sexual species to be intermingled in a singleclade.Hybrid speciation has played an important role in the evolution of the genus.
Epichloë species are ecologically significant through their effects on host plants. Their presence has been shown to alter the composition ofplant communities andfood webs. Grass varieties, especially oftall fescue andryegrass, with symbioticEpichloë endophyte strains, are commercialised and used forpasture andturf.
Elias Fries, in 1849, first definedEpichloë as asubgenus ofCordyceps.[2] Astype species, he designatedCordyceps typhina,[2] originally described byChristiaan Hendrik Persoon.[3] The brothersCharles andLouis René Tulasne then raised the subgenus to genus rank in 1865.[4]Epichloë typhina would remain the only species in the genus until the discovery of fungal grass endophytes causing livestock intoxications in the 1970s and 1980s, which stimulated the description of new species.[5] Several species from Africa and Asia that develop stromata on grasses were split off as a separate genusParepichloe in 1998.[6]
ManyEpichloë species have forms that reproduce sexually, and several purely asexual species are closely related to them. Theseanamorphs were long classified separately: Morgan-Jones and Gams (1982) collected them in a section (Albo-lanosa) of genusAcremonium.[7] In amolecular phylogenetic study in 1996, Glenn and colleagues found the genus to bepolyphyletic and proposed a new genusNeotyphodium for the anamorphic species related toEpichloë.[8] A number of species continued to be described in both genera until Leuchtmann and colleagues (2014) included most of theform genusNeotyphodium inEpichloë.[5] Phylogenetic studies had shown both genera to be intermingled, and thenomenclatural code required since 2011 that one single name be used for all stages of development of a fungal species. OnlyNeotyphodium starrii, of unclear status, andN. chilense, which is unrelated, were excluded fromEpichloë.[5]

As of 2024, there are 44 accepted species in the genus, with 1subspecies and 5varieties described. 20 species, 1 subspecies and 4 varieties are haploid. 24 species and 1 variety are hybrids (allopolyploids). Several taxa are only known as anamorphic (asexual) forms, most of which have previously been classified inNeotyphodium.[5]
| Haploid Taxa | Known Distribution | Sexual Reproduction | Vertical Transmission | Known Host Range | Reference to Species Description |
|---|---|---|---|---|---|
| Epichloë amarillans J.F. White | North America | Observed | Present | Agrostis hyemalis,Agrostis perennans,Calamagrostis canadensis,Elymus virginicus,Sphenopholis nitida,Sphenopholis obtusata,Sphenopholis × pallens,Ammophila breviligulata | White, James F. (1994). "Endophyte-host associations in grasses. XX. Structural and reproductive studies ofEpichloë amarillans sp. nov. and comparisons toE. typhina".Mycologia.86 (4):571–580.doi:10.1080/00275514.1994.12026452.ISSN 0027-5514. |
| Epichloë aotearoae (C.D. Moon, C.O. Miles & Schardl) Leuchtm. & Schardl | New Zealand, Australia | Not observed | Present | Echinopogon ovatus | Moon, Christina D.; Miles, Christopher O.; Järlfors, Ulla; Schardl, Christopher L. (2002). "The evolutionary origins of three newNeotyphodium endophyte species from grasses indigenous to the Southern Hemisphere".Mycologia.94 (4):694–711.doi:10.1080/15572536.2003.11833197.ISSN 0027-5514.PMID 21156542.S2CID 12259278. |
| Epichloë baconii J.F. White | Europe | Observed | Absent | Agrostis capillaris,Agrostis stolonifera | White, James F. (1993). "Endophyte-host associations in grasses. XIX. A systematic study of some sympatric species ofEpichloë in England".Mycologia.85 (3):444–455.doi:10.1080/00275514.1993.12026295.ISSN 0027-5514. |
| Epichloë brachyelytri Schardl & Leuchtm. | North America | Observed | Present | Brachyelytrum erectum | Schardl, Christopher L.; Leuchtmann, Adrian (1999). "Three new species ofEpichloë symbiotic with North American grasses".Mycologia.91 (1):95–107.doi:10.1080/00275514.1999.12060996.ISSN 0027-5514. |
| Epichloë bromicola Leuchtm. & Schardl | Europe, Asia | Observed onBromus erectus,Elymus repens andElymus tsukushiensis | Present inBromus benekenii,Bromus ramosus,Bromus tomentellus,Elymus repens,Elymus tsukushiensis,Hordelymus europaeus,Hordeum brevisubulatum,Leymus chinensis,Melica persica | Europe:Bromus benekenii,Bromus erectus,Bromus ramosus,Elymus repens,Hordelymus europaeus,Hordeum brevisubulatum. Asia:Bromus tomentellus,Leymus chinensis,Elymus tsukushiensis,Melica persica | Leuchtmann, Adrian; Schardl, Christopher L. (1998). "Mating compatibility and phylogenetic relationships among two new species ofEpichloë and other congeneric European species".Mycological Research.102 (10):1169–1182.doi:10.1017/S0953756298006236.ISSN 0953-7562. |
| Epichloë calamagrostidis Leuchtm. & Schardl | Europe | Observerd | Absent | Calamagrostis villosa,Calamagrostis varia,Calamagrostis purpurea | Leuchtmann, Adrian; Schardl, Christopher L. (2022). "Genetic diversity ofEpichloë endophytes associated withBrachypodium andCalamagrostis host grass genera including two new species".Journal of Fungi.8 (10): 1886. doi: 10.3390/jof8101086 |
| Epichloë elymi Schardl & Leuchtm. | North America | Observed | Present | Bromus kalmii,Elymus spp. (includingElymus hystrix) | Schardl, Christopher L.; Leuchtmann, Adrian (1999). "Three new species ofEpichloë symbiotic with North American grasses".Mycologia.91 (1):95–107.doi:10.1080/00275514.1999.12060996.ISSN 0027-5514. |
| Epichloë festucae Leuchtm., Schardl & M.R. Siegel | Europe, Asia, North America | Observed | Present | Festuca spp.,Koeleria spp.,Schedonorus spp. | Leuchtmann, Adrian; Schardl, Christopher L.; Siegel, Malcolm R. (1994). "Sexual compatibility and taxonomy of a new species ofEpichloë symbiotic with fine fescue grasses".Mycologia.86 (6):802–812.doi:10.1080/00275514.1994.12026487.ISSN 0027-5514. |
| Epichloë festucaevar.lolii (Latch, M.J. Chr. & Samuels) C.W. Bacon & Schardl | Europe, Asia, North Africa, introduced in New Zealand, Australia and elsewhere | Not observed | Present | Lolium perenne subsp.perenne | Latch, G.C.M.; Christensen, M.J.; Samuels, G.J. (1984). "Five endophytes ofLolium andFestuca in New Zealand".Mycotaxon.20 (2):535–550.doi:10.5962/p.418797. |
| Epichloë ftanensis Leuchtm. & A.D. Treindl | Europe | Observed | Absent | Calamagrostis arundinacea | Leuchtmann, Adrian; Schardl, Christopher L. (2022). "Genetic diversity ofEpichloë endophytes associated withBrachypodium andCalamagrostis host grass genera including two new species".Journal of Fungi.8 (10): 1886. doi: 10.3390/jof8101086 |
| Epichloë gansuensis (C.J. Li & Nan) Schardl | Asia | Not observed | Present | Achnatherum inebrians,Achnatherum sibiricum,Achnatherum pekinense | Li, C.J.; Nan, Z.B.; Paul, V.H.; Dapprich, P.D.; Liu, Y. (2004). "A newNeotyphodium species symbiotic with drunken horse grass (Achnatherum inebrians) in China".Mycotaxon.90:141–147. |
| Epichloëinebrians (C.D. Moon & Schardl) L. Chen & C.J. Li | Asia | Not observed | Present | Achnatherum inebrians | Moon, Christina D.; Guillaumin, Jean-Jacques; Ravel, Catherine; Li, Chunjie; Craven, Kelly D.; Schardl, Christopher L. (2007). "NewNeotyphodium endophyte species from the grass tribes Stipeae and Meliceae".Mycologia.99 (6):895–905.doi:10.1080/15572536.2007.11832521.ISSN 0027-5514.PMID 18333513.S2CID 19953493. |
| Epichloë glyceriae Schardl & Leuchtm. | North America | Observed | Absent | Glyceria spp. | Schardl, Christopher L.; Leuchtmann, Adrian (1999). "Three new species ofEpichloë symbiotic with North American grasses".Mycologia.91 (1):95–107.doi:10.1080/00275514.1999.12060996.ISSN 0027-5514. |
| Epichloë mollis (Morgan-Jones & W. Gams) Leuchtm. & Schardl | Europe | Observed | Present | Holcus mollis | Morgan-Jones, G.; Gams, W. (1982)."Notes on hyphomycetes. XLI. An endophyte ofFestuca arundinacea and the anamorph ofEpichloë typhina, new taxa in one of two new sections ofAcremonium".Mycotaxon.15:311–318.doi:10.5962/p.417405.ISSN 0093-4666. |
| Epichloë scottii T. Thünen, Y. Becker, M.P. Cox & S. Ashrafi | Europe | Observed | Present | Melica uniflora | Thünen, Torsten; Becker, Yvonne; Cox, Murray P.; Ashrafi, Samad (2022)."Epichloë scottii sp. nov., a new endophyte isolated fromMelica uniflora is the missing ancestor ofEpichloë disjuncta".IMA Fungus.13 (1): 2.doi:10.1186/s43008-022-00088-0.PMC 8812020.PMID 35109929. |
| Epichloë sibirica (X. Zhang & Y.B. Gao) Tadych | Asia | Not observed | Present | Achnatherum sibiricum | Zhang, Xin; Ren, An-Zhi; Wei, Yu-Kun; Lin, Feng; Li, Chuan; Liu, Zhi-Jian; Gao, Yu-Bao (2009)."Taxonomy, diversity and origins of symbiotic endophytes ofAchnatherum sibiricum in the Inner Mongolia Steppe of China".FEMS Microbiology Letters.301 (1):12–20.doi:10.1111/j.1574-6968.2009.01789.x.ISSN 0378-1097.PMID 19863662. |
| Epichloë stromatolonga (Y.L. Ji, L.H. Zhan & Z.W. Wang) Leuchtm. | Asia | Not observed | Present | Calamagrostis epigejos | Ji, Yan-ling; Zhan, Li-hui; Kang, Yan; Sun, Xiang-hui; Yu, Han-shou; Wang, Zhi-wei (2009). "A new stromata-producingNeotyphodium species symbiotic with clonal grassCalamagrostis epigeios (L.) Roth. grown in China".Mycologia.101 (2):200–205.doi:10.3852/08-044.ISSN 0027-5514.PMID 19397192.S2CID 32237846. |
| Epichloë sylvatica Leuchtm. & Schardl | Europe, Asia | Observed | Present | Brachypodium sylvaticum,Hordelymus europaeus | Leuchtmann, Adrian; Schardl, Christopher L. (1998). "Mating compatibility and phylogenetic relationships among two new species ofEpichloë and other congeneric European species".Mycological Research.102 (10):1169–1182.doi:10.1017/S0953756298006236.ISSN 0953-7562. |
| Epichloë sylvaticasubsp.pollinensis Leuchtm. & M. Oberhofer | Europe | Observed | Present | Hordelymus europaeus | Leuchtmann, Adrian; Oberhofer, Martina (2013). "TheEpichloë endophytes associated with the woodland grassHordelymus europaeus including four new taxa".Mycologia.105 (5):1315–1324.doi:10.3852/12-400.ISSN 0027-5514.PMID 23921239.S2CID 21024362. |
| Epichloë typhina (Pers.) Brockm. | Europe, introduced in North America and elsewhere | Observed | Present inPuccinellia distans; absent in other hosts | Anthoxanthum odoratum,Brachypodium phoenicoides,Brachypodium pinnatum,Dactylis glomerata,Lolium perenne,Milium effusum,Phleum pratense,Poa trivialis,Poa silvicola,Puccinellia distans | Brockmüller, H. J. H (1863). "Beiträge zur Kryptogamen-Flora Mecklenburgs".Archiv der Freunde der Naturgeschichte in Mecklenburg.17:162–256. |
| Epichloëclarkii J.F. White | Europe | Observed | Absent | Holcus lanatus Holcus mollis | White, James F. (1993). "Endophyte-host associations in grasses. XIX. A systematic study of some sympatric species ofEpichloë in England".Mycologia.85 (3):444–455.doi:10.1080/00275514.1993.12026295.ISSN 0027-5514. |
| Epichloëpoae Tadych, K.V. Ambrose, F.C. Belanger & J.F. White | Europe, North America | Observed onPoa nemoralis andPoa pratensis | Present inPoa nemoralis,Poa secunda subsp.juncifolia; absent inPoa pratensis | Europe:Poa nemoralis,Poa pratensis. North America:Poa secunda subsp.juncifolia,Poa sylvestris | Tadych, Mariusz; Ambrose, Karen V.; Bergen, Marshall S.; Belanger, Faith C.; White, James F. (2012). "Taxonomic placement ofEpichloë poae sp. nov. and horizontal dissemination to seedlings via conidia".Fungal Diversity.54 (1):117–131.doi:10.1007/s13225-012-0170-0.ISSN 1560-2745.S2CID 17813728. |
| Epichloëpoaevar.aonikenkana Iannone & Schardl | Argentina (Santa Cruz) | Not observed | Present | Bromus setifolius | Mc Cargo, Patricia D.; Iannone, Leopoldo J.; Vignale, María Victoria; Schardl, Christopher L.; Rossi, María Susana (2017). "Species diversity ofEpichloë symbiotic with two grasses from southern Argentinean Patagonia".Mycologia.106 (2):339–352.doi:10.3852/106.2.339.hdl:11336/37491.ISSN 0027-5514.PMID 24782501.S2CID 44547876. |
| Epichloëpoaevar.canariensis (C.D. Moon, B. Scott, & M.J. Chr.) Leuchtm. | Canary Islands | Not observed | Present | Lolium edwardii | Moon, Christina D.; Scott, Barry; Schardl, Christopher L.; Christensen, Michael J. (2000). "The evolutionary origins ofEpichloë endophytes from annual ryegrasses".Mycologia.92 (6):1103–1118.doi:10.1080/00275514.2000.12061258.ISSN 0027-5514.S2CID 218589443. |
| Epichloëpoaevar.huerfana (J.F. White, G.T. Cole & Morgan-Jones) Tadych & Leuchtm. | North America | Not observed | Present | Festuca arizonica | Glenn, Anthony E.; Bacon, Charles W.; Price, Robert; Hanlin, Richard T. (1996)."Molecular phylogeny ofAcremonium and its taxonomic implications".Mycologia.88 (3):369–383.doi:10.1080/00275514.1996.12026664.ISSN 0027-5514. |
| Hybrid Taxa | Progenitor Species | Known Distribution | Sexual Reproduction | Vertical Transmission | Known Host Range | Reference to Species Description |
|---|---|---|---|---|---|---|
| Epichloë alsodes T. Shymanovich, C.A. Young, N.D. Charlton & S.H. Faeth | Epichloë amarillans ×Epichloë typhina subsp.poae | North America | Not observed | Present | Poa alsodes | Shymanovich, Tatsiana; Charlton, Nikki D.; Musso, Ashleigh M.; Scheerer, Jonathan; Cech, Nadja B.; Faeth, Stanley H.; Young, Carolyn A. (2017)."Interspecific and intraspecific hybridEpichloë species symbiotic with the North American native grassPoa alsodes"(PDF).Mycologia.109 (3):459–474.doi:10.1080/00275514.2017.1340779.ISSN 0027-5514.PMID 28723242.S2CID 25290203. |
| Epichloë australiensis (C.D. Moon & Schardl) Leuchtm. & Schardl | Epichloë festucae ×Epichloë typhina complex (fromPoa pratensis) | Australia | Not observed | Present | Echinopogon ovatus | Moon, Christina D.; Miles, Christopher O.; Järlfors, Ulla; Schardl, Christopher L. (2017). "The evolutionary origins of three newNeotyphodium endophyte species from grasses indigenous to the Southern Hemisphere".Mycologia.94 (4):694–711.doi:10.1080/15572536.2003.11833197.ISSN 0027-5514.PMID 21156542.S2CID 12259278. |
| Epichloë cabralii Iannone, M.S. Rossi & Schardl | Epichloë amarillans ×Epichloë typhina complex (fromPoa nemoralis) | Argentina (Santa Cruz, Tierra del Fuego) | Not observed | Present | Phleum alpinum | Mc Cargo, Patricia D.; Iannone, Leopoldo J.; Vignale, María Victoria; Schardl, Christopher L.; Rossi, María Susana (2017). "Species diversity ofEpichloë symbiotic with two grasses from southern Argentinean Patagonia".Mycologia.106 (2):339–352.doi:10.3852/106.2.339.hdl:11336/37491.ISSN 0027-5514.PMID 24782501.S2CID 44547876. |
| Epichloë canadensis N.D. Charlton & C.A. Young | Epichloë amarillans ×Epichloë elymi | North America | Not observed | Present | Elymus canadensis | Charlton, N. D.; Craven, K. D.; Mittal, S.; Hopkins, A. A.; Young, C. A. (2012). "Epichloë canadensis, a new interspecific epichloid hybrid symbiotic with Canada wildrye (Elymus canadensis)".Mycologia.104 (5):1187–1199.doi:10.3852/11-403.ISSN 0027-5514.PMID 22675049.S2CID 43674700. |
| Epichloë chisosa (J.F. White & Morgan-Jones) Schardl | Epichloë amarillans ×Epichloë bromicola ×Epichloë typhina complex (fromPoa pratensis) | North America | Not observed | Present | Achnatherum eminens | Glenn, Anthony E.; Bacon, Charles W.; Price, Robert; Hanlin, Richard T. (2018)."Molecular phylogeny ofAcremonium and its taxonomic implications".Mycologia.88 (3):369–383.doi:10.1080/00275514.1996.12026664.ISSN 0027-5514. |
| Epichloë coenophiala (Morgan-Jones & W. Gams) C.W. Bacon & Schardl | Epichloë baconii (Lolium associated clade) ×Epichloë festucae ×Epichloë typhina complex (fromPoa nemoralis) | Europe, North Africa, introduced in North America and elsewhere | Not observed | Present | Schedonorus arundinaceus [synonyms:Festuca arundinacea,Lolium arundinaceum] | Morgan-Jones, G.; Gams, W. (1982)."Notes on hyphomycetes. XLI. An endophyte ofFestuca arundinacea and the anamorph ofEpichloë typhina, new taxa in one of two new sections ofAcremonium".Mycotaxon.15:311–318.doi:10.5962/p.417405.ISSN 0093-4666. |
| Epichloë danica Leuchtm. & M. Oberhofer | Epichloë bromicola ×Epichloë sylvatica | Europe | Not observed | Present | Hordelymus europaeus | Leuchtmann, Adrian; Oberhofer, Martina (2017). "TheEpichloë endophytes associated with the woodland grassHordelymus europaeus including four new taxa".Mycologia.105 (5):1315–1324.doi:10.3852/12-400.ISSN 0027-5514.PMID 23921239.S2CID 21024362. |
| Epichloë disjuncta Leuchtm. & M. Oberhofer | Epichloë scottii ×Epichloë typhina complex | Europe | Not observed | Present | Hordelymus europaeus | Leuchtmann, Adrian; Oberhofer, Martina (2017). "TheEpichloë endophytes associated with the woodland grassHordelymus europaeus including four new taxa".Mycologia.105 (5):1315–1324.doi:10.3852/12-400.ISSN 0027-5514.PMID 23921239.S2CID 21024362. |
| Epichloë funkii (K.D. Craven & Schardl) J.F. White | Epichloë elymi ×Epichloë festucae | North America | Not observed | Present | Achnatherum robustum | Moon, Christina D.; Guillaumin, Jean-Jacques; Ravel, Catherine; Li, Chunjie; Craven, Kelly D.; Schardl, Christopher L. (2017). "NewNeotyphodium endophyte species from the grass tribes Stipeae and Meliceae".Mycologia.99 (6):895–905.doi:10.1080/15572536.2007.11832521.ISSN 0027-5514.PMID 18333513.S2CID 19953493. |
| Epichloë guerinii (Guillaumin, Ravel & C.D. Moon) Leuchtm. & Schardl | Epichloë gansuensis ×Epichloë typhina complex | Europe | Not observed | Present | Melica ciliata,Melica transsilvanica | Moon, Christina D.; Guillaumin, Jean-Jacques; Ravel, Catherine; Li, Chunjie; Craven, Kelly D.; Schardl, Christopher L. (2017). "NewNeotyphodium endophyte species from the grass tribes Stipeae and Meliceae".Mycologia.99 (6):895–905.doi:10.1080/15572536.2007.11832521.ISSN 0027-5514.PMID 18333513.S2CID 19953493. |
| Epichloë hordelymi Leuchtm. & M. Oberhofer | Epichloë bromicola ×Epichloë typhina complex | Europe | Not observed | Present | Hordelymus europaeus | Leuchtmann, Adrian; Oberhofer, Martina (2017). "TheEpichloë endophytes associated with the woodland grassHordelymus europaeus including four new taxa".Mycologia.105 (5):1315–1324.doi:10.3852/12-400.ISSN 0027-5514.PMID 23921239.S2CID 21024362. |
| Epichloë hybrida M.P. Cox & M.A. Campbell | Epichloë festucae var.lolii ×Epichloë typhina | Europe | Not observed | Present | Lolium perenne | Campbell, Matthew A.; Tapper, Brian A.; Simpson, Wayne R.; Johnson, Richard D.; Mace, Wade; Ram, Arvina; Lukito, Yonathan; Dupont, Pierre-Yves; Johnson, Linda J.; Scott, D. Barry; Ganley, Austen R. D.; Cox, Murray P. (2017)."Epichloë hybrida, sp. nov., an emerging model system for investigating fungal allopolyploidy".Mycologia.109 (5):1–15.doi:10.1080/00275514.2017.1406174.ISSN 0027-5514.PMID 29370579. |
| Epichloë liyangensis Z.W. Wang, Y. Kang & H. Miao | Epichloë bromicola ×Epichloë typhina complex (fromPoa nemoralis) | Asia | Observed | Present | Poa pratensis subsp.pratensis | Yan, Kang; Yanling, Ji; Kunran, Zhu; Hui, Wang; Huimin, Miao; Zhiwei, Wang (2017). "A newEpichloë species with interspecific hybrid origins fromPoa pratensis ssp.pratensis in Liyang, China".Mycologia.103 (6):1341–1350.doi:10.3852/10-352.ISSN 0027-5514.PMID 21659456.S2CID 22672333. |
| Epichloë melicicola (C.D. Moon & Schardl) Schardl | Epichloë aotearoae ×Epichloë festucae | South Africa | Not observed | Present | Melica racemosa,Melica decumbens | Moon, Christina D.; Miles, Christopher O.; Järlfors, Ulla; Schardl, Christopher L. (2017). "The evolutionary origins of three newNeotyphodium endophyte species from grasses indigenous to the Southern Hemisphere".Mycologia.94 (4):694–711.doi:10.1080/15572536.2003.11833197.ISSN 0027-5514.PMID 21156542.S2CID 12259278. |
| Epichloë novae-zelandiae Leuchtm. & A.V. Stewart | Epichloë amarillans ×Epichloë bromicola ×Epichloë typhina subsp.poae | New Zealand | Not observed | Present | Poa matthewsii | Leuchtmann, Adrian; Young, Carolyn A.; Stewart, Alan V.; Simpson, Wayne R.; Hume, David E.; Scott, Barry (2019). "Epichloë novae-zelandiae, a new endophyte from the endemic New Zealand grassPoa matthewsii".New Zealand Journal of Botany.57 (4):271–288.Bibcode:2019NZJB...57..271L.doi:10.1080/0028825X.2019.1651344.ISSN 0028-825X.S2CID 202012350. |
| Epichloë occultans (C.D. Moon, B. Scott & M.J. Chr.) Schardl | Epichloë baconii (Lolium associated clade) ×Epichloë bromicola | Europe, North Africa, introduced in New Zealand and elsewhere | Not observed | Present | Lolium multiflorum,Lolium rigidum u.a. | Moon, Christina D.; Scott, Barry; Schardl, Christopher L.; Christensen, Michael J. (2019). "The evolutionary origins ofEpichloë endophytes from annual ryegrasses".Mycologia.92 (6):1103–1118.doi:10.1080/00275514.2000.12061258.ISSN 0027-5514.S2CID 218589443. |
| Epichloë pampeana (Iannone & Cabral) Iannone & Schardl | Epichloë festucae ×Epichloë typhina complex (fromPoa nemoralis) | South America | Not observed | Present | Bromus auleticus | Iannone, Leopoldo Javier; Cabral, Daniel; Schardl, Christopher Lewis; Rossi, María Susana (2017). "Phylogenetic divergence, morphological and physiological differences distinguish a newNeotyphodium endophyte species in the grassBromus auleticus from South America".Mycologia.101 (3):340–351.doi:10.3852/08-156.ISSN 0027-5514.PMID 19537207.S2CID 24799520. |
| Epichloë schardlii (Ghimire, Rudgers & K.D. Craven) Leuchtm. | Epichloë typhina complex (subsp.poae × subsp.poae) | North America | Not observed | Present | Cinna arundinacea | Ghimire, Sita R.; Rudgers, Jennifer A.; Charlton, Nikki D.; Young, Carolyn; Craven, Kelly D. (2017). "Prevalence of an intraspecificNeotyphodium hybrid in natural populations of stout wood reed (Cinna arundinacea L.) from eastern North America".Mycologia.103 (1):75–84.doi:10.3852/10-154.ISSN 0027-5514.PMID 20943524.S2CID 13556418. |
| Epichloë schardliivar.pennsylvanica T. Shymanovich, C.A. Young, N.D. Charlton & S.H. Faeth | Epichloë typhina complex (subsp.poae × subsp.poae) | North America | Not observed | Present | Poa alsodes | Shymanovich, Tatsiana; Charlton, Nikki D.; Musso, Ashleigh M.; Scheerer, Jonathan; Cech, Nadja B.; Faeth, Stanley H.; Young, Carolyn A. (2017)."Interspecific and intraspecific hybridEpichloë species symbiotic with the North American native grassPoa alsodes"(PDF).Mycologia.109 (3):459–474.doi:10.1080/00275514.2017.1340779.ISSN 0027-5514.PMID 28723242.S2CID 25290203. |
| Epichloë siegelii (K.D. Craven, Leuchtm. & Schardl) Leuchtm. & Schardl | Epichloë bromicola ×Epichloë festucae | Europe | Not observed | Present | Schedonorus pratensis (synonyms:Festuca pratensis,Lolium pratense) | Craven, K.D.; Blankenship, J.D.; Leuchtmann, A.; Hinight, K.; Schardl, C.L. (2001). "Hybrid fungal endophytes symbiotic with the grassLolium pratense".Sydowia.53:44–73. |
| Epichloë sinensis P. Tian, C.J. Li & Z.B. Nan | Epichloë sibirica ×Epichloë typhina subsp.poae | Asia (Northwest China) | Not observed | Present | Festuca sinensis | Tian, Pei; Xu, Wenbo; Li, Chunjie; Song, Hui; Wang, Meining; Schardl, Christopher L.; Nan, Zhibiao (2020). "Phylogenetic relationship and taxonomy of a hybridEpichloë species symbiotic withFestuca sinensis".Mycological Progress.19 (10):1069–1081.Bibcode:2020MycPr..19.1069T.doi:10.1007/s11557-020-01618-z.S2CID 225161777. |
| Epichloë sinica (Z.W. Wang, Y.L. Ji & Y. Kang) Leuchtm. | Epichloë bromicola ×Epichloë typhina complex | Asia | Not observed | Present | Roegneria spp. | Yan, Kang; Yanling, Ji; Xianghui, Sun; Lihui, Zhan; Wei, Li; Hanshou, Yu; Zhiwei, Wang (2017). "Taxonomy ofNeotyphodium endophytes of Chinese nativeRoegneria plants".Mycologia.101 (2):211–219.doi:10.3852/08-018.ISSN 0027-5514.PMID 19397194.S2CID 6307330. |
| Epichloë sinofestucae (Y.G. Chen, Y.L. Ji & Z.W. Wang) Leuchtm. | Epichloë bromicola ×Epichloë typhina complex | Asia | Not observed | Present | Festuca parvigluma | Chen, Yong-gan; Ji, Yan-ling; Yu, Han-shou; Wang, Zhi-wei (2017). "A newNeotyphodium species fromFestuca parvigluma Steud. grown in China".Mycologia.101 (5):681–685.doi:10.3852/08-181.ISSN 0027-5514.PMID 19750947.S2CID 27915317. |
| Epichloë tembladerae (Cabral & J.F. White) Iannone & Schardl | Epichloë festucae ×Epichloë typhina complex (fromPoa nemoralis) | North America | Not observed | Present | North America:Festuca arizonica. South America:Bromus auleticus,Bromus setifolius,Festuca argentina,Festuca hieronymi,Festuca magellanica,Festuca superba,Melica stuckertii,Phleum alpinum,Phleum commutatum,Poa huecu,Poa rigidifolia | Cabral, Daniel; Cafaro, Matías J.; Saidman, B.; Lugo, M.; Reddy, Ponaka V.; White, James F. (2019). "Evidence supporting the occurrence of a new species of endophyte in some South American grasses".Mycologia.91 (2):315–325.doi:10.1080/00275514.1999.12061021.ISSN 0027-5514. |
| Epichloë uncinata (W. Gams, Petrini & D. Schmidt) Leuchtm. & Schardl | Epichloë bromicola ×Epichloë typhina complex | Europe | Not observed | Present | Schedonorus pratensis (synonyms:Festuca pratensis,Lolium pratense) | Gams, W.; Petrini, O. J.; Schmidt, D. (1990)."Acremonium uncinatum, a new endophyte inFestuca pratensis".Mycotaxon.37:67–71.doi:10.5962/p.416817.A1:G25 |

Epichloë species are specialized to form and maintain systemic, constitutive (long-term)symbioses with plants, often with limited or no disease incurred on the host.[9] The best-studied of these symbionts are associated with thegrasses andsedges, in which they infect the leaves and other aerial tissues by growing between the plant cells (endophytic growth) or on the surface above or beneath the cuticle (epiphytic growth). An individual infected plant will generally bear only a single genetic individual clavicipitaceous symbiont, so the plant-fungus system constitutes a genetic unit called a symbiotum (pl. symbiota).
Symptoms and signs of the fungal infection, if manifested at all, only occur on a specific tissue or site of the hosttiller, where the fungal stroma or sclerotium emerges. The stroma (pl. stromata) is a mycelial cushion that gives rise first to asexual spores (conidia), then to the sexual fruiting bodies (ascocarps; perithecia).Sclerotia are hard resting structures that later (after incubation on the ground) germinate to form stipate stromata. Depending on the fungus species, the host tissues on which stromata or sclerotia are produced may be young inflorescences and surrounding leaves, individual florets, nodes, or small segments of the leaves. Young stromata are hyaline (colorless), and as they mature they turn dark gray, black, or yellow-orange. Mature stromata eject meiotically derived spores (ascospores), which are ejected into the atmosphere and initiate new plant infections (horizontal transmission). In some cases no stroma or sclerotium is produced, but the fungus infects seeds produced by the infected plant, and is therebytransmitted vertically to the next host generation. MostEpichloë species, and all asexual species, can vertically transmit.
The taxonomic dichotomy is especially interesting in this group of symbionts, because vegetative propagation of fungalmycelium occurs by vertical transmission, i.e., fungal growth into newly developing host tillers (=individual grass plants). Importantly, manyEpichloë species infect new grass plants solely by growing into the seeds of their grass hosts, and infecting the growing seedling.[10][11] Manifestation of the sexual state — which only occurs inEpichloë species — causes "choke disease", a condition in which grassinflorescences are engulfed by rapid fungal outgrowth forming a stroma. The fungal stroma suppresses host seed production and culminates in the ejection of meiospores (ascospores) that mediate horizontal (contagious) transmission of the fungus to new plants.[10] So, the two transmission modes exclude each other, although in many grass-Epichloë symbiota the fungus actually displays both transmission modes simultaneously, by choking some tillers and transmitting in seeds produced by unchoked tillers.
While beingobligate symbionts in nature, most epichloae are readily culturable in thelaboratory onculture media such aspotato dextrose agar or a minimal salts broth supplemented with thiamine, sugars or sugar alcohols, and organic nitrogen or ammonium.[12]
Epichloë species are commonly spread byflies of the genusBotanophila. The flies lay their eggs in the growing fungal tissues and the larvae feed on them.[13]

The epichloae display a number of central features that suggest a very strong and ancient association with their grass hosts. The symbiosis appears to have existed already during the early grassevolution that has spawned today'spooid grasses. This is suggested byphylogenetic studies indicating a preponderance of codivergence ofEpichloë species with the grass hosts they inhabit.[14] Growth of the fungal symbiont is very tightly regulated within its grass host, indicated by a largely unbranchedmycelial morphology and remarkable synchrony of grass leaf andhyphal extension of the fungus;[15][16] the latter seems to occur via a mechanism that involves stretch-induced orintercalary elongation of the endophyte's hyphae, a process so far not found in any other fungal species, indicating specialized adaptation of the fungus to the dynamic growth environment inside its host.[17] A complexNADPH oxidase enzyme-basedROS-generating system inEpichloë species is indispensable for maintenance of this growth synchrony. Thus, it has been demonstrated thatdeletion of genes encoding these enzymes inEpichloë festucae causes severely disordered fungal growth in grass tissues and even death of the grass plant.[18][19]
Molecular phylogenetic evidence demonstrates that asexualEpichloë species are derived either from sexualEpichloë species, or more commonly, are hybrids of two or more progenitorEpichloë species.[20][21]

ManyEpichloë endophytes produce a diverse range ofnatural product compounds with biological activities against a broad range of herbivores.[22][23] The purpose of these compounds is as atoxicity or feeding deterrence against insect and mammalianherbivores.[24]Ergoline alkaloids (which are ergot alkaloids, named after theergot fungus,Claviceps purpurea, a close relative of the epichloae) are characterized by a ring system derived from 4-prenyltryptophan.[25] Among the most abundant ergot alkaloids in epichloë-symbiotic grasses is ergovaline, comprising an ergolinemoiety attached to a bicyclictripeptide containing the amino acidsL-proline,L-alanine, andL-valine. Key genes and enzymes for ergot alkaloidbiosynthesis have been identified in epichloae and includedmaW, encodingdimethylallyl-tryptophan synthase andlpsA, anon-ribosomal peptide synthetase.[25]
Another group of epichloë alkaloids are theindole-diterpenoids, such as lolitrem B, which are produced from the activity of several enzymes, includingprenyltransferases and variousmonooxygenases.[26] Both the ergoline and indole-diterpenoid alkaloids havebiological activity against mammalian herbivores, and also activity against some insects.[22]Peramine is a pyrrolopyrazine alkaloid thought to be biosynthesized from theguanidinium-group-containing amino acidL-arginine, and pyrrolidine-5-carboxylate, a precursor ofL-proline,[27][28] and is an insect-feeding deterrent.[28] One gene required for peramine synthesis –perA – was found by Tanakaet al., 2005.[28] Theloline alkaloids[29] are 1-aminopyrrolizidines with an oxygen atom linking bridgehead carbons 2 and 7, and are biosynthesized from the amino acidsL-proline andL-homoserine.[30] The lolines haveinsecticidal and insect-deterrent activities comparable tonicotine.[29] Loline accumulation is strongly induced in young growing tissues[31] or by damage to the plant-fungus symbiotum.[32] Many, but not all, epichloae produce up to three classes of these alkaloids in various combinations and amounts.[22] Recently it has been shown thatEpichloë uncinata infection and loline content afford× Festulolium grasses protection from black beetle (Heteronychus arator).[33]
Many species inEpichloë produce biologically active alkaloids, such asergot alkaloids, indole-diterpenoids (e.g.,lolitrem B),loline alkaloids, and the unusualguanidinium alkaloid, peramine.[22]
It has been proposed that vertically transmittedsymbionts should evolve to bemutualists since their reproductivefitness is intimately tied to that of their hosts.[34] In fact, some positive effects of epichloae on their host plants include increased growth, drought tolerance, andherbivore andpathogen resistance.[10][35] Resistance against herbivores has been attributed toalkaloids produced by the symbiotic epichloae.[22] Although grass-epichloë symbioses have been widely recognized to bemutualistic in many wild and cultivated grasses, the interactions can be highly variable and sometimes antagonistic, especially under nutrient-poor conditions in the soil.[36]
Due to the relatively large number of grass species harboring epichloae and the variety of environments in which they occur, the mechanisms underlying beneficial or antagonistic outcomes of epichloë-grass symbioses are difficult to delineate in natural and also agricultural environments.[10][37] Some studies suggest a relationship between grazing by herbivores and increased epichloë infestation of the grasses on which they feed,[38][39] whereas others indicate a complex interplay between plant species and fungal symbionts in response to herbivory or environmental conditions.[40] The strong anti-herbivore activities of several bioactive compounds produced by the epichloae[22][27] and relatively modest direct effects of the epichloae on plant growth and physiology[41][42] suggest that these compounds play a major role in the persistence of the symbiosis.
{{cite book}}:|journal= ignored (help){{cite journal}}: CS1 maint: multiple names: authors list (link){{cite journal}}: CS1 maint: multiple names: authors list (link)