Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Emotion recognition in conversation

From Wikipedia, the free encyclopedia
Sub-field of emotion recognition

Emotion recognition in conversation (ERC) is a sub-field ofemotion recognition, that focuses on mining humanemotions from conversations ordialogues having two or moreinterlocutors.[1] The datasets in this field are usually derived fromsocial platforms that allow free and plenty of samples, often containingmultimodal data (i.e., some combination of textual, visual, and acoustic data).[2] Self- and inter-personal influences play critical role[3] in identifying some basic emotions, such as,fear,anger, joy, surprise, etc. The more fine grained the emotion labels are the harder it is to detect the correct emotion. ERC poses a number of challenges,[1] such as, conversational-context modeling, speaker-state modeling, presence of sarcasm in conversation, emotion shift across consecutive utterances of the sameinterlocutor.

The task

[edit]

The task of ERC deals with detecting emotions expressed by the speakers in each utterance of the conversation. ERC depends on three primaryfactors – the conversational context,interlocutors' mental state, and intent.[1]

Datasets

[edit]

IEMOCAP,[4] SEMAINE,[5] DailyDialogue,[6] and MELD[7] are the four widely used datasets in ERC. Among these four datasets, MELD contains multiparty dialogues.

Methods

[edit]

Approaches to ERC consist ofunsupervised, semi-unsupervised, andsupervised[8] methods. Popular supervised methods include using or combining pre-defined features,recurrent neural networks[9] (DialogueRNN[10]), graph convolutional networks[11] (DialogueGCN[12]), and attention gated hierarchical memory network.[13] Most of the contemporary methods for ERC are deep learning based and rely on the idea of latent speaker-state modeling.

Emotion Cause Recognition in Conversation

[edit]

Recently a new subtask of ERC has emerged that focuses on recognising emotion cause in conversation.[14] Methods to solve this task rely on language models-based question answering mechanism. RECCON[14] is one of the key datasets for this task.

See also

[edit]

References

[edit]
  1. ^abcPoria, Soujanya; Majumder, Navonil; Mihalcea, Rada; Hovy, Eduard (2019). "Emotion Recognition in Conversation: Research Challenges, Datasets, and Recent Advances".IEEE Access.7:100943–100953.arXiv:1905.02947.Bibcode:2019arXiv190502947P.doi:10.1109/ACCESS.2019.2929050.S2CID 147703962.
  2. ^Lee, Chul Min; Narayanan, Shrikanth (March 2005). "Toward Detecting Emotions in Spoken Dialogs".IEEE Transactions on Speech and Audio Processing.13 (2):293–303.Bibcode:2005ITSAP..13..293L.doi:10.1109/TSA.2004.838534.S2CID 12710581.
  3. ^Hazarika, Devamanyu; Poria, Soujanya; Zimmermann, Roger; Mihalcea, Rada (Oct 2019). "Emotion Recognition in Conversations with Transfer Learning from Generative Conversation Modeling".arXiv:1910.04980 [cs.CL].
  4. ^Busso, Carlos; Bulut, Murtaza; Lee, Chi-Chun; Kazemzadeh, Abe;Mower, Emily; Kim, Samuel; Chang, Jeannette N.; Lee, Sungbok; Narayanan, Shrikanth S. (2008-11-05). "IEMOCAP: interactive emotional dyadic motion capture database".Language Resources and Evaluation.42 (4):335–359.doi:10.1007/s10579-008-9076-6.ISSN 1574-020X.S2CID 11820063.
  5. ^McKeown, G.; Valstar, M.; Cowie, R.; Pantic, M.; Schroder, M. (2012-01-02)."The SEMAINE Database: Annotated Multimodal Records of Emotionally Colored Conversations between a Person and a Limited Agent".IEEE Transactions on Affective Computing.3 (1):5–17.Bibcode:2012ITAfC...3....5M.doi:10.1109/t-affc.2011.20.ISSN 1949-3045.S2CID 2995377.
  6. ^Li, Yanran, Hui Su, Xiaoyu Shen, Wenjie Li, Ziqiang Cao, and Shuzi Niu. "DailyDialog: A Manually Labelled Multi-turn Dialogue Dataset." InProceedings of the Eighth International Joint Conference on Natural Language Processing (Volume 1: Long Papers), pp. 986-995. 2017.
  7. ^Poria, Soujanya; Hazarika, Devamanyu; Majumder, Navonil; Naik, Gautam; Cambria, Erik; Mihalcea, Rada (2019). "MELD: A Multimodal Multi-Party Dataset for Emotion Recognition in Conversations".Proceedings of the 57th Annual Meeting of the Association for Computational Linguistics. Stroudsburg, PA, USA: Association for Computational Linguistics:527–536.arXiv:1810.02508.doi:10.18653/v1/p19-1050.S2CID 52932143.
  8. ^Abdelwahab, Mohammed; Busso, Carlos (March 2005). "Supervised domain adaptation for emotion recognition from speech".2015 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP). pp. 5058–5062.doi:10.1109/ICASSP.2015.7178934.ISBN 978-1-4673-6997-8.S2CID 8207841.{{cite book}}:|journal= ignored (help)
  9. ^Chernykh, Vladimir; Prikhodko, Pavel; King, Irwin (Jul 2019). "Emotion Recognition From Speech With Recurrent Neural Networks".arXiv:1701.08071 [cs.CL].
  10. ^Majumder, Navonil; Poria, Soujanya; Hazarika, Devamanyu; Mihalcea, Rada; Gelbukh, Alexander; Cambria, Erik (2019-07-17)."DialogueRNN: An Attentive RNN for Emotion Detection in Conversations".Proceedings of the AAAI Conference on Artificial Intelligence.33:6818–6825.arXiv:1811.00405.doi:10.1609/aaai.v33i01.33016818.ISSN 2374-3468.
  11. ^"Graph Convolutional Networks are Bringing Emotion Recognition Closer to Machines. Here's how". Tech Times. 2019-11-26. RetrievedFebruary 25, 2020.
  12. ^Ghosal, Deepanway; Majumder, Navonil; Soujanya, Poria (Aug 2019).DialogueGCN: A Graph Convolutional Neural Network for Emotion Recognition in Conversation. Conference on Empirical Methods in Natural Language Processing (EMNLP).
  13. ^Jiao, Wenxiang; R. Lyu, Michael; King, Irwin (November 2019). "Real-Time Emotion Recognition via Attention Gated Hierarchical Memory Network".arXiv:1911.09075 [cs.CL].
  14. ^abPoria, Soujanya; Majumder, Navonil; Hazarika, Devamanyu; Ghosal, Deepanway; Bhardwaj, Rishabh; Jian, Samson Yu Bai; Hong, Pengfei; Ghosh, Romila; Roy, Abhinaba; Chhaya, Niyati; Gelbukh, Alexander (2021-09-13)."Recognizing Emotion Cause in Conversations".Cognitive Computation.13 (5):1317–1332.arXiv:2012.11820.doi:10.1007/s12559-021-09925-7.ISSN 1866-9964.S2CID 229349214.
Emotions

Worldviews
Related
Italics indicate emotion names in foreign languages
Category
Physical
Speech
Social context
Other
Unconscious
Multi-faceted
Broader concepts
Further information
Disorders
Neuroanatomy
Applications
Technology
Key people
Related
Manual-tactile verbal
Art and literature
Retrieved from "https://en.wikipedia.org/w/index.php?title=Emotion_recognition_in_conversation&oldid=1309498814"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp