Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Elliptic integral

From Wikipedia, the free encyclopedia
(Redirected fromElliptic integrals)
Special function defined by an integral

Inintegral calculus, anelliptic integral is one of a number of related functions defined as the value of certain integrals, which were first studied byGiulio Fagnano andLeonhard Euler (c. 1750). Their name originates from their connection with the problem of finding thearc length of anellipse.

Modern mathematics defines an "elliptic integral" as anyfunctionf which can be expressed in the form

f(x)=cxR(t,P(t))dt,{\displaystyle f(x)=\int _{c}^{x}R{\left({\textstyle t,{\sqrt {P(t)}}}\right)}\,dt,}

whereR is arational function of its two arguments,P is apolynomial of degree 3 or 4 with no repeated roots, andc is a constant.

In general, integrals in this form cannot be expressed in terms ofelementary functions. Exceptions to this general rule are whenP has repeated roots, whenR(x,y) contains no odd powers ofy, and when the integral is pseudo-elliptic. However, with the appropriatereduction formula, every elliptic integral can be brought into a form that involves integrals over rational functions and the threeLegendre canonical forms, also known as the elliptic integrals of the first, second and third kind.

Besides the Legendre form given below, the elliptic integrals may also be expressed inCarlson symmetric form. Additional insight into the theory of the elliptic integral may be gained through the study of theSchwarz–Christoffel mapping. Historically,elliptic functions were discovered as inverse functions of elliptic integrals.

Argument notation

[edit]

Incomplete elliptic integrals are functions of two arguments;complete elliptic integrals are functions of a single argument. These arguments are expressed in a variety of different but equivalent ways as they give the same elliptic integral. Most texts adhere to a canonical naming scheme, using the following naming conventions.

For expressing one argument:

Each of the above three quantities is completely determined by any of the others (given that they are non-negative). Thus, they can be used interchangeably.

The other argument can likewise be expressed asφ, theamplitude, or asx oru, wherex = sinφ = snu andsn is one of theJacobian elliptic functions.

Specifying the value of any one of these quantities determines the others. Note thatu also depends onm. Some additional relationships involvingu includecosφ=cnu,and1msin2φ=dnu.{\displaystyle \cos \varphi =\operatorname {cn} u,\quad {\textrm {and}}\quad {\sqrt {1-m\sin ^{2}\varphi }}=\operatorname {dn} u.}

The latter is sometimes called thedelta amplitude and written asΔ(φ) = dnu. Sometimes the literature also refers to thecomplementary parameter, thecomplementary modulus, or thecomplementary modular angle. These are further defined in the article onquarter periods.

In this notation, the use of a vertical bar as delimiter indicates that the argument following it is the "parameter" (as defined above), while the backslash indicates that it is the modular angle. The use of a semicolon implies that the argument preceding it is the sine of the amplitude:F(φ,sinα)=F(φsin2α)=F(φα)=F(sinφ;sinα).{\displaystyle F(\varphi ,\sin \alpha )=F\left(\varphi \mid \sin ^{2}\alpha \right)=F(\varphi \setminus \alpha )=F(\sin \varphi ;\sin \alpha ).}This potentially confusing use of different argument delimiters is traditional in elliptic integrals and much of the notation is compatible with that used in the reference book byAbramowitz and Stegun and that used in the integral tables byGradshteyn and Ryzhik.

There are still other conventions for the notation of elliptic integrals employed in the literature. The notation with interchanged arguments,F(k,φ), is often encountered; and similarlyE(k,φ) for the integral of the second kind.Abramowitz and Stegun substitute the integral of the first kind,F(φ,k), for the argumentφ in their definition of the integrals of the second and third kinds, unless this argument is followed by a vertical bar: i.e.E(F(φ,k) |k2) forE(φ |k2). Moreover, their complete integrals employ theparameterk2 as argument in place of the modulusk, i.e.K(k2) rather thanK(k). And the integral of the third kind defined byGradshteyn and Ryzhik,Π(φ,n,k), puts the amplitudeφ first and not the "characteristic"n.

Thus one must be careful with the notation when using these functions, because various reputable references and software packages use different conventions in the definitions of the elliptic functions. For example,Wolfram'sMathematica software andWolfram Alpha define the complete elliptic integral of the first kind in terms of the parameterm, instead of the elliptic modulusk.

Incomplete elliptic integral of the first kind

[edit]

Theincomplete elliptic integral of the first kindF is defined as

F(φ,k)=F(φk2)=F(sinφ;k)=0φdθ1k2sin2θ.{\displaystyle F(\varphi ,k)=F\left(\varphi \mid k^{2}\right)=F(\sin \varphi ;k)=\int _{0}^{\varphi }{\frac {d\theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}.}

This is Legendre's trigonometric form of the elliptic integral; substitutingt = sinθ andx = sinφ, one obtains Jacobi's algebraic form:

F(x;k)=0xdt(1t2)(1k2t2).{\displaystyle F(x;k)=\int _{0}^{x}{\frac {dt}{\sqrt {\left(1-t^{2}\right)\left(1-k^{2}t^{2}\right)}}}.}

Equivalently, in terms of the amplitude and modular angle one has:F(φα)=F(φ,sinα)=0φdθ1(sinθsinα)2.{\displaystyle F(\varphi \setminus \alpha )=F(\varphi ,\sin \alpha )=\int _{0}^{\varphi }{\frac {d\theta }{\sqrt {1-\left(\sin \theta \sin \alpha \right)^{2}}}}.}

Withx = sn(u,k) one has:F(x;k)=u;{\displaystyle F(x;k)=u;}demonstrating that thisJacobian elliptic function is a simple inverse of the incomplete elliptic integral of the first kind.

The incomplete elliptic integral of the first kind has following addition theorem[citation needed]:F[arctan(x),k]+F[arctan(y),k]=F[arctan(xk2y2+1y2+1)+arctan(yk2x2+1x2+1),k]{\displaystyle F{\bigl [}\arctan(x),k{\bigr ]}+F{\bigl [}\arctan(y),k{\bigr ]}=F\left[\arctan \left({\frac {x{\sqrt {k'^{2}y^{2}+1}}}{\sqrt {y^{2}+1}}}\right)+\arctan \left({\frac {y{\sqrt {k'^{2}x^{2}+1}}}{\sqrt {x^{2}+1}}}\right),k\right]}

The elliptic modulus can be transformed that way:F[arcsin(x),k]=21+1k2F[arcsin((1+1k2)x1+1k2x2),11k21+1k2]{\displaystyle F{\bigl [}\arcsin(x),k{\bigr ]}={\frac {2}{1+{\sqrt {1-k^{2}}}}}F\left[\arcsin \left({\frac {\left(1+{\sqrt {1-k^{2}}}\right)x}{1+{\sqrt {1-k^{2}x^{2}}}}}\right),{\frac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right]}

Incomplete elliptic integral of the second kind

[edit]

Theincomplete elliptic integral of the second kindE in Legendre's trigonometric form is

E(φ,k)=E(φ|k2)=E(sinφ;k)=0φ1k2sin2θdθ.{\displaystyle E(\varphi ,k)=E\left(\varphi \,|\,k^{2}\right)=E(\sin \varphi ;k)=\int _{0}^{\varphi }{\sqrt {1-k^{2}\sin ^{2}\theta }}\,d\theta .}

Substitutingt = sinθ andx = sinφ, one obtains Jacobi's algebraic form:

E(x;k)=0x1k2t21t2dt.{\displaystyle E(x;k)=\int _{0}^{x}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\,dt.}

Equivalently, in terms of the amplitude and modular angle:E(φα)=E(φ,sinα)=0φ1(sinθsinα)2dθ.{\displaystyle E(\varphi \setminus \alpha )=E(\varphi ,\sin \alpha )=\int _{0}^{\varphi }{\sqrt {1-\left(\sin \theta \sin \alpha \right)^{2}}}\,d\theta .}

Relations with theJacobi elliptic functions includeE(sn(u;k);k)=0udn2(w;k)dw=uk20usn2(w;k)dw=(1k2)u+k20ucn2(w;k)dw.{\displaystyle {\begin{aligned}E{\left(\operatorname {sn} (u;k);k\right)}=\int _{0}^{u}\operatorname {dn} ^{2}(w;k)\,dw&=u-k^{2}\int _{0}^{u}\operatorname {sn} ^{2}(w;k)\,dw\\[1ex]&=\left(1-k^{2}\right)u+k^{2}\int _{0}^{u}\operatorname {cn} ^{2}(w;k)\,dw.\end{aligned}}}

Themeridian arc length from theequator tolatitudeφ is written in terms ofE:m(φ)=a(E(φ,e)+d2dφ2E(φ,e)),{\displaystyle m(\varphi )=a\left(E(\varphi ,e)+{\frac {d^{2}}{d\varphi ^{2}}}E(\varphi ,e)\right),}wherea is thesemi-major axis, ande is theeccentricity.

The incomplete elliptic integral of the second kind has following addition theorem[citation needed]:E[arctan(x),k]+E[arctan(y),k]=E[arctan(xk2y2+1y2+1)+arctan(yk2x2+1x2+1),k]+k2xyk2x2y2+x2+y2+1(xk2y2+1y2+1+yk2x2+1x2+1){\displaystyle {\begin{aligned}&E{\left[\arctan(x),k\right]}+E{\left[\arctan(y),k\right]}\\[.5ex]&\quad =E{\left[\arctan \left({\frac {x{\sqrt {k'^{2}y^{2}+1}}}{\sqrt {y^{2}+1}}}\right)+\arctan \left({\frac {y{\sqrt {k'^{2}x^{2}+1}}}{\sqrt {x^{2}+1}}}\right),k\right]}\\[1ex]&\qquad +{\frac {k^{2}xy}{k'^{2}x^{2}y^{2}+x^{2}+y^{2}+1}}\left({\frac {x{\sqrt {k'^{2}y^{2}+1}}}{\sqrt {y^{2}+1}}}+{\frac {y{\sqrt {k'^{2}x^{2}+1}}}{\sqrt {x^{2}+1}}}\right)\end{aligned}}}

The elliptic modulus can be transformed that way:E[arcsin(x),k]=(1+1k2)E[arcsin((1+1k2)x1+1k2x2),11k21+1k2]1k2F[arcsin(x),k]+k2x1x21+1k2x2{\displaystyle {\begin{aligned}E{\left[\arcsin(x),k\right]}&=\left(1+{\sqrt {1-k^{2}}}\right)E{\left[\arcsin \left({\frac {\left(1+{\sqrt {1-k^{2}}}\right)x}{1+{\sqrt {1-k^{2}x^{2}}}}}\right),{\frac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right]}\\[.5ex]&\quad -{\sqrt {1-k^{2}}}F{\left[\arcsin(x),k\right]}+{\frac {k^{2}x{\sqrt {1-x^{2}}}}{1+{\sqrt {1-k^{2}x^{2}}}}}\end{aligned}}}

Incomplete elliptic integral of the third kind

[edit]

Theincomplete elliptic integral of the third kindΠ isΠ(n;φα)=0φ11nsin2θdθ1(sinθsinα)2{\displaystyle \Pi (n;\varphi \setminus \alpha )=\int _{0}^{\varphi }{\frac {1}{1-n\sin ^{2}\theta }}{\frac {d\theta }{\sqrt {1-\left(\sin \theta \sin \alpha \right)^{2}}}}}

or

Π(n;φ|m)=0sinφ11nt2dt(1mt2)(1t2).{\displaystyle \Pi (n;\varphi \,|\,m)=\int _{0}^{\sin \varphi }{\frac {1}{1-nt^{2}}}{\frac {dt}{\sqrt {\left(1-mt^{2}\right)\left(1-t^{2}\right)}}}.}

The numbern is called thecharacteristic and can take on any value, independently of the other arguments. Note though that the valueΠ(1;π/2 |m) is infinite, for anym.

A relation with the Jacobian elliptic functions isΠ(n;am(u;k);k)=0udw1nsn2(w;k).{\displaystyle \Pi {\bigl (}n;\,\operatorname {am} (u;k);\,k{\bigr )}=\int _{0}^{u}{\frac {dw}{1-n\,\operatorname {sn} ^{2}(w;k)}}.}

The meridian arc length from the equator to latitudeφ is also related to a special case ofΠ:

m(φ)=a(1e2)Π(e2;φ|e2).{\displaystyle m(\varphi )=a\left(1-e^{2}\right)\Pi \left(e^{2};\varphi \,|\,e^{2}\right).}

Complete elliptic integral of the first kind

[edit]
Plot of the complete elliptic integral of the first kindK(k)

Elliptic Integrals are said to be 'complete' when the amplitudeφ =π/2 and thereforex = 1. Thecomplete elliptic integral of the first kindK may thus be defined asK(k)=0π2dθ1k2sin2θ=01dt(1t2)(1k2t2),{\displaystyle K(k)=\int _{0}^{\tfrac {\pi }{2}}{\frac {d\theta }{\sqrt {1-k^{2}\sin ^{2}\theta }}}=\int _{0}^{1}{\frac {dt}{\sqrt {\left(1-t^{2}\right)\left(1-k^{2}t^{2}\right)}}},}or more compactly in terms of the incomplete integral of the first kind asK(k)=F(π2,k)=F(π2|k2)=F(1;k).{\displaystyle K(k)=F\left({\tfrac {\pi }{2}},k\right)=F\left({\tfrac {\pi }{2}}\,|\,k^{2}\right)=F(1;k).}

It can be expressed as apower seriesK(k)=π2n=0((2n)!22n(n!)2)2k2n=π2n=0(P2n(0))2k2n,{\displaystyle K(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}(n!)^{2}}}\right)^{2}k^{2n}={\frac {\pi }{2}}\sum _{n=0}^{\infty }{\bigl (}P_{2n}(0){\bigr )}^{2}k^{2n},}

wherePn is theLegendre polynomials, which is equivalent to

K(k)=π2(1+(12)2k2+(1324)2k4++((2n1)!!(2n)!!)2k2n+),{\displaystyle K(k)={\frac {\pi }{2}}\left(1+\left({\frac {1}{2}}\right)^{2}k^{2}+\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}k^{4}+\cdots +\left({\frac {\left(2n-1\right)!!}{\left(2n\right)!!}}\right)^{2}k^{2n}+\cdots \right),}

wheren!! denotes thedouble factorial. In terms of the Gausshypergeometric function, the complete elliptic integral of the first kind can be expressed as

K(k)=π22F1(12,12;1;k2).{\displaystyle K(k)={\tfrac {\pi }{2}}\,{}_{2}F_{1}\left({\tfrac {1}{2}},{\tfrac {1}{2}};1;k^{2}\right).}

The complete elliptic integral of the first kind is sometimes called thequarter period. It can be computed very efficiently in terms of thearithmetic–geometric mean:[1]K(k)=π2agm(1,1k2).{\displaystyle K(k)={\frac {\pi }{2\operatorname {agm} \left(1,{\sqrt {1-k^{2}}}\right)}}.}

Therefore, the modulus can be transformed as:

K(k)=π2agm(1,1k2)=π2agm(12+1k22,1k24)=π(1+1k2)agm(1,21k24(1+1k2))=21+1k2K(11k21+1k2){\displaystyle {\begin{aligned}K(k)&={\frac {\pi }{2\operatorname {agm} \left(1,{\sqrt {1-k^{2}}}\right)}}\\[4pt]&={\frac {\pi }{2\operatorname {agm} \left({\frac {1}{2}}+{\frac {\sqrt {1-k^{2}}}{2}},{\sqrt[{4}]{1-k^{2}}}\right)}}\\[4pt]&={\frac {\pi }{\left(1+{\sqrt {1-k^{2}}}\right)\operatorname {agm} \left(1,{\frac {2{\sqrt[{4}]{1-k^{2}}}}{\left(1+{\sqrt {1-k^{2}}}\right)}}\right)}}\\[4pt]&={\frac {2}{1+{\sqrt {1-k^{2}}}}}K\left({\frac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right)\end{aligned}}}

This expression is valid for allnN{\displaystyle n\in \mathbb {N} } and0 ≤k ≤ 1:

K(k)=n[a=1ndn(2anK(k);k)]1K[kna=1nsn(2a1nK(k);k)2]{\displaystyle K(k)=n\left[\sum _{a=1}^{n}\operatorname {dn} \left({\frac {2a}{n}}K(k);k\right)\right]^{-1}K\left[k^{n}\prod _{a=1}^{n}\operatorname {sn} \left({\frac {2a-1}{n}}K(k);k\right)^{2}\right]}

Relation to the gamma function

[edit]

Ifk2 =λ(ir) andrQ+{\displaystyle r\in \mathbb {Q} ^{+}} (whereλ is themodular lambda function), thenK(k) is expressible in closed form in terms of thegamma function.[2] For example,r = 2,r = 3 andr = 7 give, respectively,[3]

K(21)=Γ(18)Γ(38)2+1824π,{\displaystyle K\left({\sqrt {2}}-1\right)={\frac {\Gamma \left({\frac {1}{8}}\right)\Gamma \left({\frac {3}{8}}\right){\sqrt {{\sqrt {2}}+1}}}{8{\sqrt[{4}]{2}}{\sqrt {\pi }}}},}

and

K(3122)=18π3443Γ(13)3{\displaystyle K\left({\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)={\frac {1}{8\pi }}{\sqrt[{4}]{3}}\,{\sqrt[{3}]{4}}\,\Gamma {\biggl (}{\frac {1}{3}}{\biggr )}^{3}}

and

K(3742)=Γ(17)Γ(27)Γ(47)474π.{\displaystyle K\left({\frac {3-{\sqrt {7}}}{4{\sqrt {2}}}}\right)={\frac {\Gamma \left({\frac {1}{7}}\right)\Gamma \left({\frac {2}{7}}\right)\Gamma \left({\frac {4}{7}}\right)}{4{\sqrt[{4}]{7}}\pi }}.}

More generally, the condition thatiKK=iK(1k2)K(k){\displaystyle {\frac {iK'}{K}}={\frac {iK\left({\sqrt {1-k^{2}}}\right)}{K(k)}}}be in animaginary quadratic field[note 1] is sufficient.[4][5] For instance, ifk =e5πi/6, theniK/K =e2πi/3 and[6]

K(e5πi/6)=eπi/12Γ3(13)34423π.{\displaystyle K\left(e^{5\pi i/6}\right)={\frac {e^{-\pi i/12}\Gamma ^{3}\left({\frac {1}{3}}\right){\sqrt[{4}]{3}}}{4{\sqrt[{3}]{2}}\pi }}.}

The second formula above, written asΓ(13)3π=27/331/4K(3122){\displaystyle {\frac {\Gamma \left({\frac {1}{3}}\right)^{3}}{\pi }}=2^{7/3}\,3^{-1/4}\,K\left({\tfrac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)}, can be completed by 5 equations showing thatΓ(1k)k/2π{\displaystyle {\frac {\Gamma \left({\frac {1}{k}}\right)^{k/2}}{\sqrt {\pi }}}} is aperiod for all even divisorsk{\displaystyle k} of24{\displaystyle 24}:

Γ(14)2π=4K(12){\displaystyle {\frac {\Gamma \left({\frac {1}{4}}\right)^{2}}{\sqrt {\pi }}}=4\,K\left({\tfrac {1}{\sqrt {2}}}\right)}

Γ(16)3π=211/33K(3122)2{\displaystyle {\frac {\Gamma \left({\frac {1}{6}}\right)^{3}}{\sqrt {\pi }}}=2^{11/3}\cdot 3\cdot K\left({\tfrac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)^{2}}

Γ(18)4π=217/2K(12)K(21)2{\displaystyle {\frac {\Gamma \left({\frac {1}{8}}\right)^{4}}{\sqrt {\pi }}}=2^{17/2}\,K\left({\tfrac {1}{\sqrt {2}}}\right)\,K\left({\sqrt {2}}-1\right)^{2}}

Γ(112)6π=255/637/4(3+1)3K(3122)2K(12)3{\displaystyle {\frac {\Gamma \left({\frac {1}{12}}\right)^{6}}{\sqrt {\pi }}}=2^{55/6}\,3^{7/4}\,({\sqrt {3}}+1)^{3}\,K\left({\tfrac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)^{2}\,K\left({\tfrac {1}{\sqrt {2}}}\right)^{3}}

Γ(124)12π=289/3325/4(2+1)6(31)3K(12)3K(3122)4K((23)(32))6{\displaystyle {\frac {\Gamma \left({\frac {1}{24}}\right)^{12}}{\sqrt {\pi }}}=2^{89/3}3^{25/4}({\sqrt {2}}+1)^{6}({\sqrt {3}}-1)^{3}K\!\left({\tfrac {1}{\sqrt {2}}}\right)^{3}K\!\left({\tfrac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)^{4}K\!{\Bigl (}(2-{\sqrt {3}})({\sqrt {3}}-{\sqrt {2}}){\Bigr )}^{6}}

Asymptotic expressions

[edit]

K(k)π2+π8k21k2π16k41k2{\displaystyle K\left(k\right)\approx {\frac {\pi }{2}}+{\frac {\pi }{8}}{\frac {k^{2}}{1-k^{2}}}-{\frac {\pi }{16}}{\frac {k^{4}}{1-k^{2}}}}This approximation has a relative precision better than3×10−4 fork <1/2. Keeping only the first two terms is correct to 0.01 precision fork <1/2.[citation needed]

Differential equation

[edit]

The differential equation for the elliptic integral of the first kind isddk(k(1k2)dK(k)dk)=kK(k){\displaystyle {\frac {d}{dk}}\left(k\left(1-k^{2}\right){\frac {dK(k)}{dk}}\right)=k\,K(k)}

A second solution to this equation isK(1k2){\displaystyle K\left({\sqrt {1-k^{2}}}\right)}. This solution satisfies the relationddkK(k)=E(k)k(1k2)K(k)k.{\displaystyle {\frac {d}{dk}}K(k)={\frac {E(k)}{k\left(1-k^{2}\right)}}-{\frac {K(k)}{k}}.}

Continued fraction

[edit]

Acontinued fraction expansion is:[7]K(k)2π=14+n=0qn1+q2n=14+11q+(1q)21q3+q(1q2)21q5+q2(1q3)21q7+q3(1q4)21q9+,{\displaystyle {\frac {K(k)}{2\pi }}=-{\frac {1}{4}}+\sum _{n=0}^{\infty }{\frac {q^{n}}{1+q^{2n}}}=-{\frac {1}{4}}+{\cfrac {1}{1-q+{\cfrac {\left(1-q\right)^{2}}{1-q^{3}+{\cfrac {q\left(1-q^{2}\right)^{2}}{1-q^{5}+{\cfrac {q^{2}\left(1-q^{3}\right)^{2}}{1-q^{7}+{\cfrac {q^{3}\left(1-q^{4}\right)^{2}}{1-q^{9}+\cdots }}}}}}}}}},}where thenome isq=q(k)=exp[πK(k)/K(k)]{\displaystyle q=q(k)=\exp[-\pi K'(k)/K(k)]} in its definition.

Inverting the period ratio

[edit]

Here, we use the complete elliptic integral of the first kind with theparameterm{\displaystyle m} instead, because the squaring function introduces problems when inverting in the complex plane. So let

K[m]=0π/2dθ1msin2θ{\displaystyle K[m]=\int _{0}^{\pi /2}{\dfrac {d\theta }{\sqrt {1-m\sin ^{2}\theta }}}}

and let

θ2(τ)=2eπiτ/4n=0qn(n+1),q=eπiτ,Imτ>0,{\displaystyle \theta _{2}(\tau )=2e^{\pi i\tau /4}\sum _{n=0}^{\infty }q^{n(n+1)},\quad q=e^{\pi i\tau },\,\operatorname {Im} \tau >0,}
θ3(τ)=1+2n=1qn2,q=eπiτ,Imτ>0{\displaystyle \theta _{3}(\tau )=1+2\sum _{n=1}^{\infty }q^{n^{2}},\quad q=e^{\pi i\tau },\,\operatorname {Im} \tau >0}

be thetheta functions.

The equation

τ=iK[1m]K[m]{\displaystyle \tau =i{\frac {K[1-m]}{K[m]}}}

can then be solved (provided that a solutionm{\displaystyle m} exists) by

m=θ2(τ)4θ3(τ)4{\displaystyle m={\frac {\theta _{2}(\tau )^{4}}{\theta _{3}(\tau )^{4}}}}

which is in fact themodular lambda function.

For the purposes of computation, the error analysis is given by[8]

|eπiτ/4θ2(τ)2n=0N1qn(n+1)|{2|q|N(N+1)1|q|2N+1,|q|2N+1<1,otherwise{\displaystyle \left|{e}^{-\pi i\tau /4}\theta _{2}\!\left(\tau \right)-2\sum _{n=0}^{N-1}{q}^{n\left(n+1\right)}\right|\leq {\begin{cases}{\frac {2{\left|q\right|}^{N\left(N+1\right)}}{1-\left|q\right|^{2N+1}}},&\left|q\right|^{2N+1}<1\\\infty ,&{\text{otherwise}}\\\end{cases}}\;}
|θ3(τ)(1+2n=1N1qn2)|{2|q|N21|q|2N+1,|q|2N+1<1,otherwise{\displaystyle \left|\theta _{3}\!\left(\tau \right)-\left(1+2\sum _{n=1}^{N-1}{q}^{n^{2}}\right)\right|\leq {\begin{cases}{\frac {2{\left|q\right|}^{N^{2}}}{1-\left|q\right|^{2N+1}}},&\left|q\right|^{2N+1}<1\\\infty ,&{\text{otherwise}}\\\end{cases}}\;}

whereNZ1{\displaystyle N\in \mathbb {Z} _{\geq 1}} andImτ>0{\displaystyle \operatorname {Im} \tau >0}.

Also

K[m]=π2θ3(τ)2,τ=iK[1m]K[m]{\displaystyle K[m]={\frac {\pi }{2}}\theta _{3}(\tau )^{2},\quad \tau =i{\frac {K[1-m]}{K[m]}}}

wheremC{0,1}{\displaystyle m\in \mathbb {C} \setminus \{0,1\}}.

Complete elliptic integral of the second kind

[edit]
Plot of the complete elliptic integral of the second kindE(k)

Thecomplete elliptic integral of the second kindE is defined as

E(k)=0π21k2sin2θdθ=011k2t21t2dt,{\displaystyle E(k)=\int _{0}^{\tfrac {\pi }{2}}{\sqrt {1-k^{2}\sin ^{2}\theta }}\,d\theta =\int _{0}^{1}{\frac {\sqrt {1-k^{2}t^{2}}}{\sqrt {1-t^{2}}}}\,dt,}

or more compactly in terms of the incomplete integral of the second kindE(φ,k) as

E(k)=E(π2,k)=E(1;k).{\displaystyle E(k)=E\left({\tfrac {\pi }{2}},k\right)=E(1;k).}

For an ellipse with semi-major axisa and semi-minor axisb and eccentricitye =1 −b2/a2, the complete elliptic integral of the second kindE(e) is equal to one quarter of thecircumferenceC of the ellipse measured in units of the semi-major axisa. In other words:

C=4aE(e).{\displaystyle C=4aE(e).}

The complete elliptic integral of the second kind can be expressed as apower series[9]

E(k)=π2n=0((2n)!22n(n!)2)2k2n12n,{\displaystyle E(k)={\frac {\pi }{2}}\sum _{n=0}^{\infty }\left({\frac {(2n)!}{2^{2n}\left(n!\right)^{2}}}\right)^{2}{\frac {k^{2n}}{1-2n}},}

which is equivalent to

E(k)=π2(1(12)2k21(1324)2k43((2n1)!!(2n)!!)2k2n2n1).{\displaystyle E(k)={\frac {\pi }{2}}\left(1-\left({\frac {1}{2}}\right)^{2}{\frac {k^{2}}{1}}-\left({\frac {1\cdot 3}{2\cdot 4}}\right)^{2}{\frac {k^{4}}{3}}-\cdots -\left({\frac {(2n-1)!!}{(2n)!!}}\right)^{2}{\frac {k^{2n}}{2n-1}}-\cdots \right).}

In terms of theGauss hypergeometric function, the complete elliptic integral of the second kind can be expressed as

E(k)=π22F1(12,12;1;k2).{\displaystyle E(k)={\tfrac {\pi }{2}}\,{}_{2}F_{1}\left({\tfrac {1}{2}},-{\tfrac {1}{2}};1;k^{2}\right).}

The modulus can be transformed that way:E(k)=(1+1k2)E(11k21+1k2)1k2K(k){\displaystyle E(k)=\left(1+{\sqrt {1-k^{2}}}\right)\,E\left({\frac {1-{\sqrt {1-k^{2}}}}{1+{\sqrt {1-k^{2}}}}}\right)-{\sqrt {1-k^{2}}}\,K(k)}

Computation

[edit]

Like the integral of the first kind, the complete elliptic integral of the second kind can be computed very efficiently using thearithmetic–geometric mean.[1]

Define sequencesan andgn, wherea0 = 1,g0 =1 −k2 =k and the recurrence relationsan + 1 =an +gn/2,gn + 1 =an gn hold. Furthermore, definecn=|an2gn2|.{\displaystyle c_{n}={\sqrt {\left|a_{n}^{2}-g_{n}^{2}\right|}}.}

By definition,

a=limnan=limngn=agm(1,1k2).{\displaystyle a_{\infty }=\lim _{n\to \infty }a_{n}=\lim _{n\to \infty }g_{n}=\operatorname {agm} \left(1,{\sqrt {1-k^{2}}}\right).}

Also

limncn=0.{\displaystyle \lim _{n\to \infty }c_{n}=0.}

Then

E(k)=π2a(1n=02n1cn2).{\displaystyle E(k)={\frac {\pi }{2a_{\infty }}}\left(1-\sum _{n=0}^{\infty }2^{n-1}c_{n}^{2}\right).}

In practice, the arithmetic-geometric mean would simply be computed up to some limit. This formula converges quadratically for all|k| ≤ 1. To speed up computation further, the relationcn + 1 =cn2/4an + 1 can be used.

Furthermore, ifk2 =λ(ir) andrQ+{\displaystyle r\in \mathbb {Q} ^{+}} (whereλ is themodular lambda function), thenE(k) is expressible in closed form in terms ofK(k)=π2agm(1,1k2){\displaystyle K(k)={\frac {\pi }{2\operatorname {agm} \left(1,{\sqrt {1-k^{2}}}\right)}}}and hence can be computed without the need for the infinite summation term. For example,r = 1,r = 3 andr = 7 give, respectively,[10]

E(12)=12K(12)+π4K(12),{\displaystyle E\left({\frac {1}{\sqrt {2}}}\right)={\frac {1}{2}}K\left({\frac {1}{\sqrt {2}}}\right)+{\frac {\pi }{4K\left({\frac {1}{\sqrt {2}}}\right)}},}

and

E(3122)=3+36K(3122)+π312K(3122),{\displaystyle E\left({\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)={\frac {3+{\sqrt {3}}}{6}}K\left({\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)+{\frac {\pi {\sqrt {3}}}{12K\left({\frac {{\sqrt {3}}-1}{2{\sqrt {2}}}}\right)}},}

and

E(3742)=7+2714K(3742)+π728K(3742).{\displaystyle E\left({\frac {3-{\sqrt {7}}}{4{\sqrt {2}}}}\right)={\frac {7+2{\sqrt {7}}}{14}}K\left({\frac {3-{\sqrt {7}}}{4{\sqrt {2}}}}\right)+{\frac {\pi {\sqrt {7}}}{28K\left({\frac {3-{\sqrt {7}}}{4{\sqrt {2}}}}\right)}}.}

Derivative and differential equation

[edit]

dE(k)dk=E(k)K(k)k{\displaystyle {\frac {dE(k)}{dk}}={\frac {E(k)-K(k)}{k}}}(k21)ddk(kdE(k)dk)=kE(k){\displaystyle \left(k^{2}-1\right){\frac {d}{dk}}\left(k\;{\frac {dE(k)}{dk}}\right)=kE(k)}

A second solution to this equation isE(1 −k2) −K(1 −k2).

Complete elliptic integral of the third kind

[edit]
Plot of the complete elliptic integral of the third kindΠ(n,k) with several fixed values ofn

Thecomplete elliptic integral of the third kindΠ can be defined as

Π(n,k)=0π2dθ(1nsin2θ)1k2sin2θ.{\displaystyle \Pi (n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {d\theta }{\left(1-n\sin ^{2}\theta \right){\sqrt {1-k^{2}\sin ^{2}\theta }}}}.}

Note that sometimes the elliptic integral of the third kind is defined with an inverse sign for thecharacteristicn,Π(n,k)=0π2dθ(1+nsin2θ)1k2sin2θ.{\displaystyle \Pi '(n,k)=\int _{0}^{\frac {\pi }{2}}{\frac {d\theta }{\left(1+n\sin ^{2}\theta \right){\sqrt {1-k^{2}\sin ^{2}\theta }}}}.}

Just like the complete elliptic integrals of the first and second kind, the complete elliptic integral of the third kind can be computed very efficiently using the arithmetic-geometric mean.[1]

Partial derivatives

[edit]

Π(n,k)n=12(k2n)(n1)(E(k)+1n(k2n)K(k)+1n(n2k2)Π(n,k))Π(n,k)k=knk2(E(k)k21+Π(n,k)){\displaystyle {\begin{aligned}{\frac {\partial \Pi (n,k)}{\partial n}}&={\frac {1}{2\left(k^{2}-n\right)(n-1)}}\left(E(k)+{\frac {1}{n}}\left(k^{2}-n\right)K(k)+{\frac {1}{n}}\left(n^{2}-k^{2}\right)\Pi (n,k)\right)\\[8pt]{\frac {\partial \Pi (n,k)}{\partial k}}&={\frac {k}{n-k^{2}}}\left({\frac {E(k)}{k^{2}-1}}+\Pi (n,k)\right)\end{aligned}}}

Jacobi zeta function

[edit]

In 1829, Jacobi defined theJacobi zeta function:Z(φ,k)=E(φ,k)E(k)K(k)F(φ,k).{\displaystyle Z(\varphi ,k)=E(\varphi ,k)-{\frac {E(k)}{K(k)}}F(\varphi ,k).}It is periodic inφ{\displaystyle \varphi } with minimal periodπ{\displaystyle \pi }. It is related to theJacobi zn function byZ(φ,k)=zn(F(φ,k),k){\displaystyle Z(\varphi ,k)=\operatorname {zn} (F(\varphi ,k),k)}. In the literature (e.g. Whittaker and Watson (1927)), sometimesZ{\displaystyle Z} means Wikipedia'szn{\displaystyle \operatorname {zn} }. Some authors (e.g. King (1924)) useZ{\displaystyle Z} for both Wikipedia'sZ{\displaystyle Z} andzn{\displaystyle \operatorname {zn} }.

Legendre's relation

[edit]

TheLegendre's relation orLegendre Identity shows the relation of the integrals K and E of an elliptic modulus and its anti-related counterpart[11][12] in an integral equation of second degree:

For two modules that are Pythagorean counterparts to each other, this relation is valid:

K(ε)E(1ε2)+E(ε)K(1ε2)K(ε)K(1ε2)=π2{\displaystyle K(\varepsilon )E\left({\sqrt {1-\varepsilon ^{2}}}\right)+E(\varepsilon )K\left({\sqrt {1-\varepsilon ^{2}}}\right)-K(\varepsilon )K\left({\sqrt {1-\varepsilon ^{2}}}\right)={\frac {\pi }{2}}}

For example:

K(35)E(45)+E(35)K(45)K(35)K(45)=12π{\displaystyle K({\color {blueviolet}{\tfrac {3}{5}}})E({\color {blue}{\tfrac {4}{5}}})+E({\color {blueviolet}{\tfrac {3}{5}}})K({\color {blue}{\tfrac {4}{5}}})-K({\color {blueviolet}{\tfrac {3}{5}}})K({\color {blue}{\tfrac {4}{5}}})={\tfrac {1}{2}}\pi }

And for two modules that are tangential counterparts to each other, the following relationship is valid:

(1+ε)K(ε)E(1ε1+ε)+21+εE(ε)K(1ε1+ε)2K(ε)K(1ε1+ε)=12π{\displaystyle (1+\varepsilon )K(\varepsilon )E({\tfrac {1-\varepsilon }{1+\varepsilon }})+{\tfrac {2}{1+\varepsilon }}E(\varepsilon )K({\tfrac {1-\varepsilon }{1+\varepsilon }})-2K(\varepsilon )K({\tfrac {1-\varepsilon }{1+\varepsilon }})={\tfrac {1}{2}}\pi }

For example:

43K(13)E(12)+32E(13)K(12)2K(13)K(12)=12π{\displaystyle {\tfrac {4}{3}}K({\color {blue}{\tfrac {1}{3}}})E({\color {green}{\tfrac {1}{2}}})+{\tfrac {3}{2}}E({\color {blue}{\tfrac {1}{3}}})K({\color {green}{\tfrac {1}{2}}})-2K({\color {blue}{\tfrac {1}{3}}})K({\color {green}{\tfrac {1}{2}}})={\tfrac {1}{2}}\pi }

The Legendre's relation for tangential modular counterparts results directly from the Legendre's identity for Pythagorean modular counterparts by using theLanden modular transformation on the Pythagorean counter modulus.

Special identity for the lemniscatic case

[edit]

For the lemniscatic case, the elliptic modulus or specific eccentricity ε is equal to half the square root of two. Legendre's identity for the lemniscatic case can be proved as follows:

According to theChain rule these derivatives hold:

ddyK(122)F[arccos(xy);122]=2x1x4y4{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} y}}\,K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-F{\biggl [}\arccos(xy);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}={\frac {{\sqrt {2}}\,x}{\sqrt {1-x^{4}y^{4}}}}}
ddy2E(122)K(122)2E[arccos(xy);122]+F[arccos(xy);122]=2x3y21x4y4{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} y}}\,2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-2E{\biggl [}\arccos(xy);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}+F{\biggl [}\arccos(xy);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}={\frac {{\sqrt {2}}\,x^{3}y^{2}}{\sqrt {1-x^{4}y^{4}}}}}

By using theFundamental theorem of calculus these formulas can be generated:

K(122)F[arccos(x);122]=012x1x4y4dy{\displaystyle K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}=\int _{0}^{1}{\frac {{\sqrt {2}}\,x}{\sqrt {1-x^{4}y^{4}}}}\,\mathrm {d} y}
2E(122)K(122)2E[arccos(x);122]+F[arccos(x);122]=012x3y21x4y4dy{\displaystyle 2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-2E{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}+F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}=\int _{0}^{1}{\frac {{\sqrt {2}}\,x^{3}y^{2}}{\sqrt {1-x^{4}y^{4}}}}\,\mathrm {d} y}

TheLinear combination of the two now mentioned integrals leads to the following formula:

21x4{2E(122)K(122)2E[arccos(x);122]+F[arccos(x);122]}+{\displaystyle {\frac {\sqrt {2}}{\sqrt {1-x^{4}}}}{\biggl \{}2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-2E{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}+F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}{\biggr \}}\,+}
+2x21x4{K(122)F[arccos(x);122]}=012x3(y2+1)(1x4)(1x4y4)dy{\displaystyle +\,{\frac {{\sqrt {2}}\,x^{2}}{\sqrt {1-x^{4}}}}{\biggl \{}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}{\biggr \}}=\int _{0}^{1}{\frac {2\,x^{3}(y^{2}+1)}{\sqrt {(1-x^{4})(1-x^{4}\,y^{4})}}}\,\mathrm {d} y}

By forming the original antiderivative related to x from the function now shown using theProduct rule this formula results:

{K(122)F[arccos(x);122]}{2E(122)K(122)2E[arccos(x);122]+F[arccos(x);122]}={\displaystyle {\biggl \{}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}{\biggr \}}{\biggl \{}2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-2E{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}+F{\biggl [}\arccos(x);{\frac {1}{2}}{\sqrt {2}}{\biggr ]}{\biggr \}}=}
=011y2(y2+1)[artanh(y2)artanh(1x4y21x4y4)]dy{\displaystyle =\int _{0}^{1}{\frac {1}{y^{2}}}(y^{2}+1){\biggl [}{\text{artanh}}(y^{2})-{\text{artanh}}{\bigl (}{\frac {{\sqrt {1-x^{4}}}\,y^{2}}{\sqrt {1-x^{4}y^{4}}}}{\bigr )}{\biggr ]}\mathrm {d} y}

If the valuex=1{\displaystyle x=1} is inserted in this integral identity, then the following identity emerges:

K(122)[2E(122)K(122)]=011y2(y2+1)artanh(y2)dy={\displaystyle K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}{\biggl [}2\,E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}{\biggr ]}=\int _{0}^{1}{\frac {1}{y^{2}}}(y^{2}+1)\,{\text{artanh}}(y^{2})\,\mathrm {d} y=}
=[2arctan(y)1y(1y2)artanh(y2)]y=0y=1=2arctan(1)=π2{\displaystyle ={\biggl [}2\arctan(y)-{\frac {1}{y}}(1-y^{2})\,{\text{artanh}}(y^{2}){\biggr ]}_{y=0}^{y=1}=2\arctan(1)={\frac {\pi }{2}}}

This is how this lemniscatic excerpt from Legendre's identity appears:

2E(122)K(122)K(122)2=π2{\displaystyle 2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}^{2}={\frac {\pi }{2}}}

Generalization for the overall case

[edit]

Now the modular general case[13][14] is worked out. For this purpose, the derivatives of the complete elliptic integrals are derived after the modulusε{\displaystyle \varepsilon } and then they are combined. And then the Legendre's identity balance is determined.

Because the derivative of thecircle function is the negative product of theidentical mapping function and the reciprocal of the circle function:

ddε1ε2=ε1ε2{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}{\sqrt {1-\varepsilon ^{2}}}=-\,{\frac {\varepsilon }{\sqrt {1-\varepsilon ^{2}}}}}

These are the derivatives of K and E shown in this article in the sections above:

ddεK(ε)=1ε(1ε2)[E(ε)(1ε2)K(ε)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}K(\varepsilon )={\frac {1}{\varepsilon (1-\varepsilon ^{2})}}{\bigl [}E(\varepsilon )-(1-\varepsilon ^{2})K(\varepsilon ){\bigr ]}}
ddεE(ε)=1ε[K(ε)E(ε)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}E(\varepsilon )=-\,{\frac {1}{\varepsilon }}{\bigl [}K(\varepsilon )-E(\varepsilon ){\bigr ]}}

In combination with the derivative of the circle function these derivatives are valid then:

ddεK(1ε2)=1ε(1ε2)[ε2K(1ε2)E(1ε2)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}K({\sqrt {1-\varepsilon ^{2}}})={\frac {1}{\varepsilon (1-\varepsilon ^{2})}}{\bigl [}\varepsilon ^{2}K({\sqrt {1-\varepsilon ^{2}}})-E({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}}
ddεE(1ε2)=ε1ε2[K(1ε2)E(1ε2)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}E({\sqrt {1-\varepsilon ^{2}}})={\frac {\varepsilon }{1-\varepsilon ^{2}}}{\bigl [}K({\sqrt {1-\varepsilon ^{2}}})-E({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}}

Legendre's identity includes products of any two complete elliptic integrals. For the derivation of the function side from the equation scale of Legendre's identity, theProduct rule is now applied in the following:

ddεK(ε)E(1ε2)=1ε(1ε2)[E(ε)E(1ε2)K(ε)E(1ε2)+ε2K(ε)K(1ε2)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}K(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})={\frac {1}{\varepsilon (1-\varepsilon ^{2})}}{\bigl [}E(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})-K(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})+\varepsilon ^{2}K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}}
ddεE(ε)K(1ε2)=1ε(1ε2)[E(ε)E(1ε2)+E(ε)K(1ε2)(1ε2)K(ε)K(1ε2)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}E(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})={\frac {1}{\varepsilon (1-\varepsilon ^{2})}}{\bigl [}-E(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})+E(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})-(1-\varepsilon ^{2})K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}}
ddεK(ε)K(1ε2)=1ε(1ε2)[E(ε)K(1ε2)K(ε)E(1ε2)(12ε2)K(ε)K(1ε2)]{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})={\frac {1}{\varepsilon (1-\varepsilon ^{2})}}{\bigl [}E(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})-K(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})-(1-2\varepsilon ^{2})K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}}

Of these three equations, adding the top two equations and subtracting the bottom equation gives this result:

ddε[K(ε)E(1ε2)+E(ε)K(1ε2)K(ε)K(1ε2)]=0{\displaystyle {\frac {\mathrm {d} }{\mathrm {d} \varepsilon }}{\bigl [}K(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})+E(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})-K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}}){\bigr ]}=0}

In relation to theε{\displaystyle \varepsilon } the equation balance constantly gives the value zero.

The previously determined result shall be combined with the Legendre equation to the modulusε=1/2{\displaystyle \varepsilon =1/{\sqrt {2}}} that is worked out in the section before:

2E(122)K(122)K(122)2=π2{\displaystyle 2E{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}-K{\bigl (}{\frac {1}{2}}{\sqrt {2}}{\bigr )}^{2}={\frac {\pi }{2}}}

The combination of the last two formulas gives the following result:

K(ε)E(1ε2)+E(ε)K(1ε2)K(ε)K(1ε2)=12π{\displaystyle K(\varepsilon )E({\sqrt {1-\varepsilon ^{2}}})+E(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})-K(\varepsilon )K({\sqrt {1-\varepsilon ^{2}}})={\tfrac {1}{2}}\pi }

Because if the derivative of a continuous function constantly takes the value zero, then the concerned function is a constant function. This means that this function results in the same function value for each abscissa valueε{\displaystyle \varepsilon } and the associated function graph is therefore a horizontal straight line.

See also

[edit]

References

[edit]

Notes

[edit]
  1. ^K can beanalytically extended to thecomplex plane.

References

[edit]
  1. ^abcCarlson 2010, 19.8.
  2. ^Borwein, Jonathan M.; Borwein, Peter B. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience.ISBN 0-471-83138-7. p. 296
  3. ^Borwein, Jonathan M.; Borwein, Peter B. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience.ISBN 0-471-83138-7. p. 298
  4. ^Chowla, S.; Selberg, A. (1949)."On Epstein's Zeta Function (I)".Proceedings of the National Academy of Sciences.35 (7): 373.Bibcode:1949PNAS...35..371C.doi:10.1073/PNAS.35.7.371.PMC 1063041.PMID 16588908.S2CID 45071481.
  5. ^Chowla, S.; Selberg, A. (1967)."On Epstein's Zeta-Function".Journal für die Reine und Angewandte Mathematik.227:86–110.
  6. ^"Legendre elliptic integrals (Entry 175b7a)".
  7. ^N.Bagis,L.Glasser.(2015)"Evaluations of a Continued fraction of Ramanujan". Rend.Sem.Mat.Univ.Padova, Vol.133 pp 1-10
  8. ^"Approximations of Jacobi theta functions".The Mathematical Functions Grimoire. Fredrik Johansson. RetrievedAugust 29, 2024.
  9. ^"Complete elliptic integral of the second kind: Series representations (Formula 08.01.06.0002)".
  10. ^Borwein, Jonathan M.; Borwein, Peter B. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity (First ed.). Wiley-Interscience.ISBN 0-471-83138-7. p. 26, 161
  11. ^"Legendre-Relation" (in German). Retrieved2022-11-29.
  12. ^"Legendre Relation". Retrieved2022-11-29.
  13. ^"integration - Proving Legendres Relation for elliptic curves". Retrieved2023-02-10.
  14. ^Internet Archive (1991),Paul Halmos celebrating 50 years of mathematics, New York : Springer-Verlag,ISBN 0-387-97509-8, retrieved2023-02-10

Sources

[edit]

External links

[edit]
Wikimedia Commons has media related toElliptic integral.
Rational curves
Elliptic curves
Analytic theory
Arithmetic theory
Applications
Higher genus
Plane curves
Riemann surfaces
Constructions
Structure of curves
Divisors on curves
Moduli
Morphisms
Singularities
Vector bundles
International
Other
Retrieved from "https://en.wikipedia.org/w/index.php?title=Elliptic_integral&oldid=1335557556"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp