Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Ellipsoidal coordinates

From Wikipedia, the free encyclopedia
Three-dimensional coordinate system
This article includes alist of references,related reading, orexternal links,but its sources remain unclear because it lacksinline citations. Please helpimprove this article byintroducing more precise citations.(April 2021) (Learn how and when to remove this message)
For the terrestrial coordinates, seeEllipsoidal coordinates (geodesy).

Ellipsoidal coordinates are a three-dimensionalorthogonalcoordinate system(λ,μ,ν){\displaystyle (\lambda ,\mu ,\nu )} that generalizes the two-dimensionalelliptic coordinate system. Unlike most three-dimensional orthogonal coordinates that featurequadratic coordinate surfaces, the ellipsoidal coordinate system is based onconfocal quadrics.

Basic formulae

[edit]

The Cartesian coordinates(x,y,z){\displaystyle (x,y,z)} can be produced from the ellipsoidal coordinates(λ,μ,ν){\displaystyle (\lambda ,\mu ,\nu )} by the equations

x2=(a2+λ)(a2+μ)(a2+ν)(a2b2)(a2c2){\displaystyle x^{2}={\frac {\left(a^{2}+\lambda \right)\left(a^{2}+\mu \right)\left(a^{2}+\nu \right)}{\left(a^{2}-b^{2}\right)\left(a^{2}-c^{2}\right)}}}
y2=(b2+λ)(b2+μ)(b2+ν)(b2a2)(b2c2){\displaystyle y^{2}={\frac {\left(b^{2}+\lambda \right)\left(b^{2}+\mu \right)\left(b^{2}+\nu \right)}{\left(b^{2}-a^{2}\right)\left(b^{2}-c^{2}\right)}}}
z2=(c2+λ)(c2+μ)(c2+ν)(c2b2)(c2a2){\displaystyle z^{2}={\frac {\left(c^{2}+\lambda \right)\left(c^{2}+\mu \right)\left(c^{2}+\nu \right)}{\left(c^{2}-b^{2}\right)\left(c^{2}-a^{2}\right)}}}

where the following limits apply to the coordinates

λ<c2<μ<b2<ν<a2.{\displaystyle -\lambda <c^{2}<-\mu <b^{2}<-\nu <a^{2}.}

Consequently, surfaces of constantλ{\displaystyle \lambda } areellipsoids

x2a2+λ+y2b2+λ+z2c2+λ=1,{\displaystyle {\frac {x^{2}}{a^{2}+\lambda }}+{\frac {y^{2}}{b^{2}+\lambda }}+{\frac {z^{2}}{c^{2}+\lambda }}=1,}

whereas surfaces of constantμ{\displaystyle \mu } arehyperboloids of one sheet

x2a2+μ+y2b2+μ+z2c2+μ=1,{\displaystyle {\frac {x^{2}}{a^{2}+\mu }}+{\frac {y^{2}}{b^{2}+\mu }}+{\frac {z^{2}}{c^{2}+\mu }}=1,}

because the last term in the lhs is negative, and surfaces of constantν{\displaystyle \nu } arehyperboloids of two sheets

x2a2+ν+y2b2+ν+z2c2+ν=1{\displaystyle {\frac {x^{2}}{a^{2}+\nu }}+{\frac {y^{2}}{b^{2}+\nu }}+{\frac {z^{2}}{c^{2}+\nu }}=1}

because the last two terms in the lhs are negative.

The orthogonal system of quadrics used for the ellipsoidal coordinates areconfocal quadrics.

Scale factors and differential operators

[edit]

For brevity in the equations below, we introduce a function

S(σ) =def (a2+σ)(b2+σ)(c2+σ){\displaystyle S(\sigma )\ {\stackrel {\mathrm {def} }{=}}\ \left(a^{2}+\sigma \right)\left(b^{2}+\sigma \right)\left(c^{2}+\sigma \right)}

whereσ{\displaystyle \sigma } can represent any of the three variables(λ,μ,ν){\displaystyle (\lambda ,\mu ,\nu )}. Using this function, thescale factors can be written

hλ=12(λμ)(λν)S(λ){\displaystyle h_{\lambda }={\frac {1}{2}}{\sqrt {\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)}{S(\lambda )}}}}
hμ=12(μλ)(μν)S(μ){\displaystyle h_{\mu }={\frac {1}{2}}{\sqrt {\frac {\left(\mu -\lambda \right)\left(\mu -\nu \right)}{S(\mu )}}}}
hν=12(νλ)(νμ)S(ν){\displaystyle h_{\nu }={\frac {1}{2}}{\sqrt {\frac {\left(\nu -\lambda \right)\left(\nu -\mu \right)}{S(\nu )}}}}

Hence, the infinitesimal volume element equals

dV=(λμ)(λν)(μν)8S(λ)S(μ)S(ν)dλdμdν{\displaystyle dV={\frac {\left(\lambda -\mu \right)\left(\lambda -\nu \right)\left(\mu -\nu \right)}{8{\sqrt {-S(\lambda )S(\mu )S(\nu )}}}}\,d\lambda \,d\mu \,d\nu }

and theLaplacian is defined by

2Φ=4S(λ)(λμ)(λν)λ[S(λ)Φλ]+4S(μ)(μλ)(μν)μ[S(μ)Φμ]+4S(ν)(νλ)(νμ)ν[S(ν)Φν]{\displaystyle {\begin{aligned}\nabla ^{2}\Phi ={}&{\frac {4{\sqrt {S(\lambda )}}}{\left(\lambda -\mu \right)\left(\lambda -\nu \right)}}{\frac {\partial }{\partial \lambda }}\left[{\sqrt {S(\lambda )}}{\frac {\partial \Phi }{\partial \lambda }}\right]\\[1ex]&+{\frac {4{\sqrt {S(\mu )}}}{\left(\mu -\lambda \right)\left(\mu -\nu \right)}}{\frac {\partial }{\partial \mu }}\left[{\sqrt {S(\mu )}}{\frac {\partial \Phi }{\partial \mu }}\right]\\[1ex]&+{\frac {4{\sqrt {S(\nu )}}}{\left(\nu -\lambda \right)\left(\nu -\mu \right)}}{\frac {\partial }{\partial \nu }}\left[{\sqrt {S(\nu )}}{\frac {\partial \Phi }{\partial \nu }}\right]\end{aligned}}}

Other differential operators such asF{\displaystyle \nabla \cdot \mathbf {F} } and×F{\displaystyle \nabla \times \mathbf {F} } can be expressed in the coordinates(λ,μ,ν){\displaystyle (\lambda ,\mu ,\nu )} by substituting the scale factors into the general formulae found in orthogonal coordinates.

Angular parametrization

[edit]

An alternative (but non-orthogonal) parametrization exists that closely follows the angular parametrization ofspherical coordinates:[1]

x=assinθcosϕ,{\displaystyle x=as\sin \theta \cos \phi ,}
y=bssinθsinϕ,{\displaystyle y=bs\sin \theta \sin \phi ,}
z=cscosθ.{\displaystyle z=cs\cos \theta .}

Here,s>0{\displaystyle s>0} parametrizes the concentric ellipsoids around the origin andθ[0,π]{\displaystyle \theta \in [0,\pi ]} andϕ[0,2π]{\displaystyle \phi \in [0,2\pi ]} are the usual polar and azimuthal angles of spherical coordinates, respectively. The corresponding volume element is

dxdydz=abcs2sinθdsdθdϕ.{\displaystyle dx\,dy\,dz=abc\,s^{2}\sin \theta \,ds\,d\theta \,d\phi .}

See also

[edit]

References

[edit]
  1. ^"Ellipsoid Quadrupole Moment". 9 October 2013.

Bibliography

[edit]

Unusual convention

[edit]
  • Landau LD, Lifshitz EM, Pitaevskii LP (1984).Electrodynamics of Continuous Media (Volume 8 of theCourse of Theoretical Physics) (2nd ed.). New York: Pergamon Press. pp. 19–29.ISBN 978-0-7506-2634-7. Uses (ξ, η, ζ) coordinates that have the units of distance squared.

External links

[edit]
Two dimensional
Three dimensional
Retrieved from "https://en.wikipedia.org/w/index.php?title=Ellipsoidal_coordinates&oldid=1335137177"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp