Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Electromagnetic tensor

From Wikipedia, the free encyclopedia
Mathematical object that describes the electromagnetic field in spacetime
For an explanation and meanings of the index notation in this article, seeEinstein notation andantisymmetric tensor.
"Electromagnetic field strength" redirects here; not to be confused withElectric field strength orMagnetic field strength.
Electromagnetism
Solenoid

Inelectromagnetism, theelectromagnetic tensor orelectromagnetic field tensor (sometimes called thefield strength tensor,Faraday tensor orMaxwell bivector) is a mathematical object that describes theelectromagnetic field in spacetime. The field tensor was developed byArnold Sommerfeld after the four-dimensionaltensor formulation ofspecial relativity was introduced byHermann Minkowski.[1]: 22  The tensor allows related physical laws to be written concisely, and allows for thequantization of the electromagnetic field by the Lagrangian formulation describedbelow.

Definition

[edit]

The electromagnetic tensor, conventionally labelledF, is defined as theexterior derivative of theelectromagnetic four-potential,A, a differential 1-form:[2][3]

F =def dA.{\displaystyle F\ {\stackrel {\mathrm {def} }{=}}\ \mathrm {d} A.}

Therefore,F is adifferential 2-form— an antisymmetric rank-2 tensor field—on Minkowski space. In component form,

Fμν=μAννAμ.{\displaystyle F_{\mu \nu }=\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }.}

where{\displaystyle \partial } is thefour-gradient andA{\displaystyle A} is thefour-potential.

SI units for Maxwell's equations and theparticle physicist's sign convention for thesignature ofMinkowski space(+ − − −), will be used throughout this article.

Relationship with the classical fields

[edit]

The Faradaydifferential 2-form is given by

F=(Ex/c) dxdt+(Ey/c) dydt+(Ez/c) dzdt+Bx dydz+By dzdx+Bz dxdy,{\displaystyle F=(E_{x}/c)\ dx\wedge dt+(E_{y}/c)\ dy\wedge dt+(E_{z}/c)\ dz\wedge dt+B_{x}\ dy\wedge dz+B_{y}\ dz\wedge dx+B_{z}\ dx\wedge dy,}

wheredt{\displaystyle dt} is the time element times the speed of lightc{\displaystyle c}.

This is theexterior derivative of its 1-form antiderivative, the covariant form of the four-potential, is[4]: 315 

A=(ϕ/c) dtAx dxAy dyAz dz,{\displaystyle A=(\phi /c)\ dt-A_{x}\ dx-A_{y}\ dy-A_{z}\ dz,}

whereϕ(x,t){\displaystyle \phi ({\vec {x}},t)} hasϕ=E{\displaystyle -{\vec {\nabla }}\phi ={\vec {E}}} (ϕ{\displaystyle \phi } is a scalar potential for theirrotational/conservative vector fieldE{\displaystyle {\vec {E}}}) andA(x,t){\displaystyle {\vec {A}}({\vec {x}},t)} has×A=B{\displaystyle {\vec {\nabla }}\times {\vec {A}}={\vec {B}}} (A{\displaystyle {\vec {A}}} is a vector potential for thesolenoidal vector fieldB{\displaystyle {\vec {B}}}).

Theelectric andmagnetic fields can be obtained from the components of the electromagnetic tensor. The relationship is simplest inCartesian coordinates:

Ei=cF0i,{\displaystyle E_{i}=cF_{0i},}

wherec is the speed of light, and

Bi=1/2ϵijkFjk,{\displaystyle B_{i}=-1/2\epsilon _{ijk}F^{jk},}

whereϵijk{\displaystyle \epsilon _{ijk}} is theLevi-Civita tensor. This gives the fields in a particular reference frame; if the reference frame is changed, the components of the electromagnetic tensor willtransform covariantly, and the fields in the new frame will be given by the new components.

In contravariantmatrix form with metric signature (+,-,-,-),[4]: 313 

Fμν=[0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0].{\displaystyle F^{\mu \nu }={\begin{bmatrix}0&-E_{x}/c&-E_{y}/c&-E_{z}/c\\E_{x}/c&0&-B_{z}&B_{y}\\E_{y}/c&B_{z}&0&-B_{x}\\E_{z}/c&-B_{y}&B_{x}&0\end{bmatrix}}.}

The covariant form is given byindex lowering,

Fμν=ηανFβαημβ=[0Ex/cEy/cEz/cEx/c0BzByEy/cBz0BxEz/cByBx0].{\displaystyle F_{\mu \nu }=\eta _{\alpha \nu }F^{\beta \alpha }\eta _{\mu \beta }={\begin{bmatrix}0&E_{x}/c&E_{y}/c&E_{z}/c\\-E_{x}/c&0&-B_{z}&B_{y}\\-E_{y}/c&B_{z}&0&-B_{x}\\-E_{z}/c&-B_{y}&B_{x}&0\end{bmatrix}}.}

The Faraday tensor'sHodge dual is

Gαβ=12ϵαβγδFγδ=[0BxByBzBx0Ez/cEy/cByEz/c0Ex/cBzEy/cEx/c0]{\displaystyle {G^{\alpha \beta }={\frac {1}{2}}\epsilon ^{\alpha \beta \gamma \delta }F_{\gamma \delta }={\begin{bmatrix}0&-B_{x}&-B_{y}&-B_{z}\\B_{x}&0&E_{z}/c&-E_{y}/c\\B_{y}&-E_{z}/c&0&E_{x}/c\\B_{z}&E_{y}/c&-E_{x}/c&0\end{bmatrix}}}}

From now on in this article, when the electric or magnetic fields are mentioned, a Cartesian coordinate system is assumed, and the electric and magnetic fields are with respect to the coordinate system's reference frame, as in the equations above.

Properties

[edit]

The matrix form of the field tensor yields the following properties:[5]

  1. Antisymmetry:Fμν=Fνμ{\displaystyle F^{\mu \nu }=-F^{\nu \mu }}
  2. Six independent components: In Cartesian coordinates, these are simply the three spatial components of the electric field (Ex, Ey, Ez) and magnetic field (Bx, By, Bz).
  3. Inner product: If one forms an inner product of the field strength tensor aLorentz invariant is formedFμνFμν=2(B2E2c2){\displaystyle F_{\mu \nu }F^{\mu \nu }=2\left(B^{2}-{\frac {E^{2}}{c^{2}}}\right)} meaning this number does not change from oneframe of reference to another.
  4. Pseudoscalar invariant: The product of the tensorFμν{\displaystyle F^{\mu \nu }} with itsHodge dualGμν{\displaystyle G^{\mu \nu }} gives aLorentz invariant:GγδFγδ=12ϵαβγδFαβFγδ=4cBE{\displaystyle G_{\gamma \delta }F^{\gamma \delta }={\frac {1}{2}}\epsilon _{\alpha \beta \gamma \delta }F^{\alpha \beta }F^{\gamma \delta }=-{\frac {4}{c}}\mathbf {B} \cdot \mathbf {E} \,} whereϵαβγδ{\displaystyle \epsilon _{\alpha \beta \gamma \delta }} is the rank-4Levi-Civita symbol. The sign for the above depends on the convention used for the Levi-Civita symbol. The convention used here isϵ0123=1{\displaystyle \epsilon _{0123}=-1}. This and the previous Lorentz invariant vanish in the crossed field case.
  5. Determinant:det(F)=1c2(BE)2{\displaystyle \det \left(F\right)={\frac {1}{c^{2}}}\left(\mathbf {B} \cdot \mathbf {E} \right)^{2}} which is proportional to the square of the above invariant.
  6. Trace:F=Fμμ=0{\displaystyle F={{F}^{\mu }}_{\mu }=0} which is equal to zero.

Significance

[edit]

This tensor simplifies and reducesMaxwell's equations as four vector calculus equations into two tensor field equations. Inelectrostatics andelectrodynamics,Gauss's law andAmpère's circuital law are respectively:

E=ρϵ0,×B1c2Et=μ0J{\displaystyle \nabla \cdot \mathbf {E} ={\frac {\rho }{\epsilon _{0}}},\quad \nabla \times \mathbf {B} -{\frac {1}{c^{2}}}{\frac {\partial \mathbf {E} }{\partial t}}=\mu _{0}\mathbf {J} }

and reduce to the inhomogeneous Maxwell equation:

αFβα=μ0Jβ{\displaystyle \partial _{\alpha }F^{\beta \alpha }=-\mu _{0}J^{\beta }}, whereJα=(cρ,J){\displaystyle J^{\alpha }=(c\rho ,\mathbf {J} )} is thefour-current.

Inmagnetostatics and magnetodynamics,Gauss's law for magnetism andMaxwell–Faraday equation are respectively:

B=0,Bt+×E=0{\displaystyle \nabla \cdot \mathbf {B} =0,\quad {\frac {\partial \mathbf {B} }{\partial t}}+\nabla \times \mathbf {E} =\mathbf {0} }

which reduce to theBianchi identity:

γFαβ+αFβγ+βFγα=0{\displaystyle \partial _{\gamma }F_{\alpha \beta }+\partial _{\alpha }F_{\beta \gamma }+\partial _{\beta }F_{\gamma \alpha }=0}

or using theindex notation with square brackets[note 1] for the antisymmetric part of the tensor:

[αFβγ]=0{\displaystyle \partial _{[\alpha }F_{\beta \gamma ]}=0}

Using the expression relating the Faraday tensor to the four-potential, one can prove that the above antisymmetric quantity turns to zero identically (0{\displaystyle \equiv 0}). This tensor equation reproduces the homogeneous Maxwell's equations.

Relativity

[edit]
Main article:Maxwell's equations in curved spacetime

The field tensor derives its name from the fact that the electromagnetic field is found to obey thetensor transformation law, this general property of physical laws being recognised after the advent ofspecial relativity. This theory stipulated that all the laws of physics should take the same form in all coordinate systems – this led to the introduction oftensors. The tensor formalism also leads to a mathematically simpler presentation of physical laws.

The inhomogeneous Maxwell equation leads to thecontinuity equation:

αJα=Jα,α=0{\displaystyle \partial _{\alpha }J^{\alpha }=J^{\alpha }{}_{,\alpha }=0}

implyingconservation of charge.

Maxwell's laws above can be generalised tocurved spacetime by simply replacingpartial derivatives withcovariant derivatives:

F[αβ;γ]=0{\displaystyle F_{[\alpha \beta ;\gamma ]}=0} andFαβ;α=μ0Jβ{\displaystyle F^{\alpha \beta }{}_{;\alpha }=\mu _{0}J^{\beta }}

where thesemicolon notation represents a covariant derivative, as opposed to a partial derivative. These equations are sometimes referred to as thecurved space Maxwell equations. Again, the second equation implies charge conservation (in curved spacetime):

Jα;α=0{\displaystyle J^{\alpha }{}_{;\alpha }\,=0}

The stress-energy tensor of electromagnetism

Tμν=1μ0[FμαFνα14ημνFαβFαβ],{\displaystyle T^{\mu \nu }={\frac {1}{\mu _{0}}}\left[F^{\mu \alpha }F^{\nu }{}_{\alpha }-{\frac {1}{4}}\eta ^{\mu \nu }F_{\alpha \beta }F^{\alpha \beta }\right]\,,}

satisfies

Tαβ,β+FαβJβ=0.{\displaystyle {T^{\alpha \beta }}_{,\beta }+F^{\alpha \beta }J_{\beta }=0\,.}

Lagrangian formulation of classical electromagnetism

[edit]
See also:Classical field theory

Classical electromagnetism andMaxwell's equations can be derived from theaction:S=(14μ0FμνFμνJμAμ)d4x{\displaystyle {\mathcal {S}}=\int \left(-{\begin{matrix}{\frac {1}{4\mu _{0}}}\end{matrix}}F_{\mu \nu }F^{\mu \nu }-J^{\mu }A_{\mu }\right)\mathrm {d} ^{4}x\,}whered4x{\displaystyle \mathrm {d} ^{4}x} is over space and time.

This means theLagrangian density is

L=14μ0FμνFμνJμAμ=14μ0(μAννAμ)(μAννAμ)JμAμ=14μ0(μAνμAννAμμAνμAννAμ+νAμνAμ)JμAμ{\displaystyle {\begin{aligned}{\mathcal {L}}&=-{\frac {1}{4\mu _{0}}}F_{\mu \nu }F^{\mu \nu }-J^{\mu }A_{\mu }\\&=-{\frac {1}{4\mu _{0}}}\left(\partial _{\mu }A_{\nu }-\partial _{\nu }A_{\mu }\right)\left(\partial ^{\mu }A^{\nu }-\partial ^{\nu }A^{\mu }\right)-J^{\mu }A_{\mu }\\&=-{\frac {1}{4\mu _{0}}}\left(\partial _{\mu }A_{\nu }\partial ^{\mu }A^{\nu }-\partial _{\nu }A_{\mu }\partial ^{\mu }A^{\nu }-\partial _{\mu }A_{\nu }\partial ^{\nu }A^{\mu }+\partial _{\nu }A_{\mu }\partial ^{\nu }A^{\mu }\right)-J^{\mu }A_{\mu }\\\end{aligned}}}

The two middle terms in the parentheses are the same, as are the two outer terms, so the Lagrangian density is

L=12μ0(μAνμAννAμμAν)JμAμ.{\displaystyle {\mathcal {L}}=-{\frac {1}{2\mu _{0}}}\left(\partial _{\mu }A_{\nu }\partial ^{\mu }A^{\nu }-\partial _{\nu }A_{\mu }\partial ^{\mu }A^{\nu }\right)-J^{\mu }A_{\mu }.}

Substituting this into theEuler–Lagrange equation of motion for a field:

μ(L(μAν))LAν=0{\displaystyle \partial _{\mu }\left({\frac {\partial {\mathcal {L}}}{\partial (\partial _{\mu }A_{\nu })}}\right)-{\frac {\partial {\mathcal {L}}}{\partial A_{\nu }}}=0}

So the Euler–Lagrange equation becomes:

μ1μ0(μAννAμ)+Jν=0.{\displaystyle -\partial _{\mu }{\frac {1}{\mu _{0}}}\left(\partial ^{\mu }A^{\nu }-\partial ^{\nu }A^{\mu }\right)+J^{\nu }=0.\,}

The quantity in parentheses above is just the field tensor, so this finally simplifies to

μFμν=μ0Jν{\displaystyle \partial _{\mu }F^{\mu \nu }=\mu _{0}J^{\nu }}

That equation is another way of writing the two inhomogeneousMaxwell's equations (namely,Gauss's law andAmpère's circuital law) using the substitutions:

1cEi=F0iϵijkBk=Fij{\displaystyle {\begin{aligned}{\frac {1}{c}}E^{i}&=-F^{0i}\\\epsilon ^{ijk}B_{k}&=-F^{ij}\end{aligned}}}

wherei, j, k take the values 1, 2, and 3.

Hamiltonian form

[edit]

TheHamiltonian density can be obtained with the usual relation,

H(ϕi,πi)=πiϕ˙i(ϕi,πi)L.{\displaystyle {\mathcal {H}}(\phi ^{i},\pi _{i})=\pi _{i}{\dot {\phi }}^{i}(\phi ^{i},\pi _{i})-{\mathcal {L}}\,.}

Hereϕi=Ai{\displaystyle \phi ^{i}=A^{i}} are the fields and the momentum density of the EM field is

πi=T0i=1μ0F0αFiα=1μ0cE×B.{\displaystyle \pi _{i}=T_{0i}={\frac {1}{\mu _{0}}}F_{0}{}^{\alpha }F_{i\alpha }={\frac {1}{\mu _{0}c}}\mathbf {E} \times \mathbf {B} \,.}

such that the conserved quantity associated with translation fromNoether's theorem is the total momentum

P=αmαx˙α+1μ0cVd3xE×B.{\displaystyle \mathbf {P} =\sum _{\alpha }m_{\alpha }{\dot {\mathbf {x} }}_{\alpha }+{\frac {1}{\mu _{0}c}}\int _{\mathcal {V}}\mathrm {d} ^{3}x\,\mathbf {E} \times \mathbf {B} \,.}

The Hamiltonian density for the electromagnetic field is related to theelectromagnetic stress-energy tensor

Tμν=1μ0[FμαFνα14ημνFαβFαβ].{\displaystyle T^{\mu \nu }={\frac {1}{\mu _{0}}}\left[F^{\mu \alpha }F^{\nu }{}_{\alpha }-{\frac {1}{4}}\eta ^{\mu \nu }F_{\alpha \beta }F^{\alpha \beta }\right]\,.}

as

H=T00=12(ϵ0E2+1μ0B2)=18π(E2+B2).{\displaystyle {\mathcal {H}}=T_{00}={\frac {1}{2}}\left(\epsilon _{0}\mathbf {E} ^{2}+{\frac {1}{\mu _{0}}}\mathbf {B} ^{2}\right)={\frac {1}{8\pi }}\left(\mathbf {E} ^{2}+\mathbf {B} ^{2}\right)\,.}

where we have neglected theenergy density of matter, assuming only the EM field, and the last equality assumes the CGS system. The momentum of nonrelativistic charges interacting with the EM field in theCoulomb gauge (A=iAi=0{\displaystyle \nabla \cdot \mathbf {A} =\nabla _{i}A^{i}=0}) is

pα=mαx˙α+qαcA(xα).{\displaystyle \mathbf {p} _{\alpha }=m_{\alpha }{\dot {\mathbf {x} }}_{\alpha }+{\frac {q_{\alpha }}{c}}\mathbf {A} (\mathbf {x} _{\alpha })\,.}

The total Hamiltonian of the matter + EM field system is

H=Vd3xT00=Hmat+Hem.{\displaystyle H=\int _{\mathcal {V}}d^{3}x\,T_{00}=H_{\rm {mat}}+H_{\rm {em}}\,.}

where for nonrelativistic point particles in the Coulomb gauge

Hmat=αmα|x˙α|2+α<βqαqβ|xαxβ|=α12mα[pαqαcA(xα)]2+α<βqαqβ|xαxβ|.{\displaystyle H_{\rm {mat}}=\sum _{\alpha }m_{\alpha }|{\dot {\mathbf {x} }}_{\alpha }|^{2}+\sum _{\alpha <\beta }{\frac {q_{\alpha }q_{\beta }}{|\mathbf {x} _{\alpha }-\mathbf {x} _{\beta }|}}=\sum _{\alpha }{\frac {1}{2m_{\alpha }}}\left[\mathbf {p} _{\alpha }-{\frac {q_{\alpha }}{c}}\mathbf {A} (\mathbf {x} _{\alpha })\right]^{2}+\sum _{\alpha <\beta }{\frac {q_{\alpha }q_{\beta }}{|\mathbf {x} _{\alpha }-\mathbf {x} _{\beta }|}}\,.}

where the last term is identically18πVd3xE2{\displaystyle {\frac {1}{8\pi }}\int _{\mathcal {V}}d^{3}x\mathbf {E} _{\parallel }^{2}} whereEi=iA0{\displaystyle {E}_{\parallel i}={\nabla _{i}}A_{0}} and

Hem=18πVd3x(E2+B2).{\displaystyle H_{\rm {em}}={\frac {1}{8\pi }}\int _{\mathcal {V}}d^{3}x\left(\mathbf {E} _{\perp }^{2}+\mathbf {B} ^{2}\right)\,.}

where andEi=1c0Ai{\displaystyle {E}_{\perp i}=-{\frac {1}{c}}\partial _{0}A_{i}}.

Quantum electrodynamics and field theory

[edit]
Main articles:Quantum electrodynamics andquantum field theory

TheLagrangian ofquantum electrodynamics extends beyond the classical Lagrangian established in relativity to incorporate the creation and annihilation of photons (and electrons):

L=ψ¯(icγαDαmc2)ψ14μ0FαβFαβ,{\displaystyle {\mathcal {L}}={\bar {\psi }}\left(i\hbar c\,\gamma ^{\alpha }D_{\alpha }-mc^{2}\right)\psi -{\frac {1}{4\mu _{0}}}F_{\alpha \beta }F^{\alpha \beta },}

where the first part in the right hand side, containing theDirac spinorψ{\displaystyle \psi }, represents theDirac field. Inquantum field theory it is used as the template for the gauge field strength tensor. By being employed in addition to the local interaction Lagrangian it reprises its usual role in QED.

See also

[edit]

Notes

[edit]
  1. ^ By definition,
    T[abc]=13!(Tabc+Tbca+TcabTacbTbacTcba){\displaystyle T_{[abc]}={\frac {1}{3!}}(T_{abc}+T_{bca}+T_{cab}-T_{acb}-T_{bac}-T_{cba})}

    So if

    γFαβ+αFβγ+βFγα=0{\displaystyle \partial _{\gamma }F_{\alpha \beta }+\partial _{\alpha }F_{\beta \gamma }+\partial _{\beta }F_{\gamma \alpha }=0}

    then

    0=26(γFαβ+αFβγ+βFγα)=16{γ(2Fαβ)+α(2Fβγ)+β(2Fγα)}=16{γ(FαβFβα)+α(FβγFγβ)+β(FγαFαγ)}=16(γFαβ+αFβγ+βFγαγFβααFγββFαγ)=[γFαβ]{\displaystyle {\begin{aligned}0&={\begin{matrix}{\frac {2}{6}}\end{matrix}}(\partial _{\gamma }F_{\alpha \beta }+\partial _{\alpha }F_{\beta \gamma }+\partial _{\beta }F_{\gamma \alpha })\\&={\begin{matrix}{\frac {1}{6}}\end{matrix}}\{\partial _{\gamma }(2F_{\alpha \beta })+\partial _{\alpha }(2F_{\beta \gamma })+\partial _{\beta }(2F_{\gamma \alpha })\}\\&={\begin{matrix}{\frac {1}{6}}\end{matrix}}\{\partial _{\gamma }(F_{\alpha \beta }-F_{\beta \alpha })+\partial _{\alpha }(F_{\beta \gamma }-F_{\gamma \beta })+\partial _{\beta }(F_{\gamma \alpha }-F_{\alpha \gamma })\}\\&={\begin{matrix}{\frac {1}{6}}\end{matrix}}(\partial _{\gamma }F_{\alpha \beta }+\partial _{\alpha }F_{\beta \gamma }+\partial _{\beta }F_{\gamma \alpha }-\partial _{\gamma }F_{\beta \alpha }-\partial _{\alpha }F_{\gamma \beta }-\partial _{\beta }F_{\alpha \gamma })\\&=\partial _{[\gamma }F_{\alpha \beta ]}\end{aligned}}}
  1. ^Darrigol, O. (2005). The genesis of the theory of relativity. In Einstein, 1905–2005: Poincaré Seminar 2005 (pp. 1-31). Basel: Birkhäuser Basel
  2. ^J. A. Wheeler; C. Misner; K. S. Thorne (1973).Gravitation. W.H. Freeman & Co.ISBN 0-7167-0344-0.
  3. ^D. J. Griffiths (2007).Introduction to Electrodynamics (3rd ed.). Pearson Education, Dorling Kindersley.ISBN 978-81-7758-293-2.
  4. ^abVanderlinde, Jack (2005).Classical Electromagnetic Theory. Dordrecht: Springer Netherlands.doi:10.1007/1-4020-2700-1.ISBN 978-1-4020-2699-7.
  5. ^J. A. Wheeler; C. Misner; K. S. Thorne (1973).Gravitation. W.H. Freeman & Co.ISBN 0-7167-0344-0.

References

[edit]
Scope
Mathematics
Notation
Tensor
definitions
Operations
Related
abstractions
Notable tensors
Mathematics
Physics
Mathematicians
Retrieved from "https://en.wikipedia.org/w/index.php?title=Electromagnetic_tensor&oldid=1310143042"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp