Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Duhem–Margules equation

From Wikipedia, the free encyclopedia

TheDuhem–Margules equation, named forPierre Duhem andMax Margules, is athermodynamic statement of the relationship between the twocomponents of a singleliquid where thevapour mixture is regarded as anideal gas:

(dlnPAdlnxA)T,P=(dlnPBdlnxB)T,P{\displaystyle \left({\frac {\mathrm {d} \ln P_{A}}{\mathrm {d} \ln x_{A}}}\right)_{T,P}=\left({\frac {\mathrm {d} \ln P_{B}}{\mathrm {d} \ln x_{B}}}\right)_{T,P}}

wherePA andPB are the partialvapour pressures of the two constituents andxA andxB are themole fractions of the liquid. The equation gives the relation between changes in mole fraction and partial pressure of the components.

Derivation

[edit]

Let us consider a binary liquid mixture of two component in equilibrium with their vapor at constant temperature and pressure. Then from theGibbs–Duhem equation, we have

nAdμA+nBdμB=0{\displaystyle n_{A}\mathrm {d} \mu _{A}+n_{B}\mathrm {d} \mu _{B}=0}1

WherenA andnB are number of moles of the component A and B while μA and μB are their chemical potentials.

Dividing equation (1) bynA +nB, then

nAnA+nBdμA+nBnA+nBdμB=0{\displaystyle {\frac {n_{A}}{n_{A}+n_{B}}}\mathrm {d} \mu _{A}+{\frac {n_{B}}{n_{A}+n_{B}}}\mathrm {d} \mu _{B}=0}

Or

xAdμA+xBdμB=0{\displaystyle x_{A}\mathrm {d} \mu _{A}+x_{B}\mathrm {d} \mu _{B}=0}2

Now the chemical potential of any component in mixture is dependent upon temperature, pressure and the composition of the mixture. Hence if temperature and pressure are taken to be constant, the chemical potentials must satisfy

dμA=(dμAdxA)T,PdxA{\displaystyle \mathrm {d} \mu _{A}=\left({\frac {\mathrm {d} \mu _{A}}{\mathrm {d} x_{A}}}\right)_{T,P}\mathrm {d} x_{A}}3
dμB=(dμBdxB)T,PdxB{\displaystyle \mathrm {d} \mu _{B}=\left({\frac {\mathrm {d} \mu _{B}}{\mathrm {d} x_{B}}}\right)_{T,P}\mathrm {d} x_{B}}4

Putting these values in equation (2), then

xA(dμAdxA)T,PdxA+xB(dμBdxB)T,PdxB=0{\displaystyle x_{A}\left({\frac {\mathrm {d} \mu _{A}}{\mathrm {d} x_{A}}}\right)_{T,P}\mathrm {d} x_{A}+x_{B}\left({\frac {\mathrm {d} \mu _{B}}{\mathrm {d} x_{B}}}\right)_{T,P}\mathrm {d} x_{B}=0}5

Because the sum of mole fractions of all components in the mixture is unity, i.e.,

x1+x2=1{\displaystyle x_{1}+x_{2}=1}

we have

dx1+dx2=0{\displaystyle \mathrm {d} x_{1}+\mathrm {d} x_{2}=0}

so equation (5) can be re-written:

xA(dμAdxA)T,P=xB(dμBdxB)T,P{\displaystyle x_{A}\left({\frac {\mathrm {d} \mu _{A}}{\mathrm {d} x_{A}}}\right)_{T,P}=x_{B}\left({\frac {\mathrm {d} \mu _{B}}{\mathrm {d} x_{B}}}\right)_{T,P}}6

Now the chemical potential of any component in mixture is such that

μ=μ0+RTlnP{\displaystyle \mu =\mu _{0}+RT\ln P}

whereP is the partial pressure of that component. By differentiating this equation with respect to the mole fraction of a component:

dμdx=RTdlnPdx{\displaystyle {\frac {\mathrm {d} \mu }{\mathrm {d} x}}=RT{\frac {\mathrm {d} \ln P}{\mathrm {d} x}}}

we have for components A and B

dμAdxA=RTdlnPAdxA{\displaystyle {\frac {\mathrm {d} \mu _{A}}{\mathrm {d} x_{A}}}=RT{\frac {\mathrm {d} \ln P_{A}}{\mathrm {d} x_{A}}}}7
dμBdxB=RTdlnPBdxB{\displaystyle {\frac {\mathrm {d} \mu _{B}}{\mathrm {d} x_{B}}}=RT{\frac {\mathrm {d} \ln P_{B}}{\mathrm {d} x_{B}}}}8

Substituting these value in equation (6), then

xAdlnPAdxA=xBdlnPBdxB{\displaystyle x_{A}{\frac {\mathrm {d} \ln P_{A}}{\mathrm {d} x_{A}}}=x_{B}{\frac {\mathrm {d} \ln P_{B}}{\mathrm {d} x_{B}}}}

or

(dlnPAdlnxA)T,P=(dlnPBdlnxB)T,P{\displaystyle \left({\frac {\mathrm {d} \ln P_{A}}{\mathrm {d} \ln x_{A}}}\right)_{T,P}=\left({\frac {\mathrm {d} \ln P_{B}}{\mathrm {d} \ln x_{B}}}\right)_{T,P}}

This final equation is the Duhem–Margules equation.

Sources

[edit]
  • Atkins, Peter and Julio de Paula. 2002.Physical Chemistry, 7th ed. New York: W. H. Freeman and Co.
  • Carter, Ashley H. 2001.Classical and Statistical Thermodynamics. Upper Saddle River: Prentice Hall.


Stub icon

Thisthermodynamics-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Duhem–Margules_equation&oldid=1166353109"
Categories:
Hidden category:

[8]ページ先頭

©2009-2025 Movatter.jp