Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dual system

From Wikipedia, the free encyclopedia
Dual pair of vector spaces
This article is about dual pairs of vector spaces. For dual pairs in representation theory, seeReductive dual pair. For the recycling system, seeDuales System.
This reads like a textbook, not an encyclopedia'stone or style may not reflect theencyclopedic tone used on Wikipedia. See Wikipedia'sguide to writing better articles for suggestions.(January 2022) (Learn how and when to remove this message)

Inmathematics, adual system,dual pair or aduality over afieldK{\displaystyle \mathbb {K} } is a triple(X,Y,b){\displaystyle (X,Y,b)} consisting of twovector spaces,X{\displaystyle X} andY{\displaystyle Y}, overK{\displaystyle \mathbb {K} } and a non-degeneratebilinear mapb:X×YK{\displaystyle b:X\times Y\to \mathbb {K} }.

Inmathematics,duality is the study of dual systems and is important infunctional analysis. Duality plays crucial roles inquantum mechanics because it has extensive applications to the theory ofHilbert spaces.

Definition, notation, and conventions

[edit]

Pairings

[edit]

Apairing orpair over a fieldK{\displaystyle \mathbb {K} } is a triple(X,Y,b),{\displaystyle (X,Y,b),} which may also be denoted byb(X,Y),{\displaystyle b(X,Y),} consisting of two vector spacesX{\displaystyle X} andY{\displaystyle Y} overK{\displaystyle \mathbb {K} } and abilinear mapb:X×YK{\displaystyle b:X\times Y\to \mathbb {K} } called thebilinear map associated with the pairing,[1] or more simply called the pairing'smap or itsbilinear form. The examples here only describe whenK{\displaystyle \mathbb {K} } is either thereal numbersR{\displaystyle \mathbb {R} } or thecomplex numbersC{\displaystyle \mathbb {C} }, but the mathematical theory is general.

For everyxX{\displaystyle x\in X}, defineb(x,):YKyb(x,y){\displaystyle {\begin{alignedat}{4}b(x,\,\cdot \,):\,&Y&&\to &&\,\mathbb {K} \\&y&&\mapsto &&\,b(x,y)\end{alignedat}}}and for everyyY,{\displaystyle y\in Y,} defineb(,y):XKxb(x,y).{\displaystyle {\begin{alignedat}{4}b(\,\cdot \,,y):\,&X&&\to &&\,\mathbb {K} \\&x&&\mapsto &&\,b(x,y).\end{alignedat}}}Everyb(x,){\displaystyle b(x,\,\cdot \,)} is alinear functional onY{\displaystyle Y} and everyb(,y){\displaystyle b(\,\cdot \,,y)} is alinear functional onX{\displaystyle X}. Therefore bothb(X,):={b(x,):xX} and b(,Y):={b(,y):yY},{\displaystyle b(X,\,\cdot \,):=\{b(x,\,\cdot \,):x\in X\}\qquad {\text{ and }}\qquad b(\,\cdot \,,Y):=\{b(\,\cdot \,,y):y\in Y\},}form vector spaces oflinear functionals.

It is common practice to writex,y{\displaystyle \langle x,y\rangle } instead ofb(x,y){\displaystyle b(x,y)}, in which in some cases the pairing may be denoted byX,Y{\displaystyle \left\langle X,Y\right\rangle } rather than(X,Y,,){\displaystyle (X,Y,\langle \cdot ,\cdot \rangle )}. However, this article will reserve the use of,{\displaystyle \langle \cdot ,\cdot \rangle } for the canonicalevaluation map (defined below) so as to avoid confusion for readers not familiar with this subject.

Dual pairings

[edit]

A pairing(X,Y,b){\displaystyle (X,Y,b)} is called adual system, adual pair,[2] or aduality overK{\displaystyle \mathbb {K} } if thebilinear formb{\displaystyle b} is non-degenerate, which means that it satisfies the following two separation axioms:

  1. Y{\displaystyle Y}separates (distinguishes) points ofX{\displaystyle X}: ifxX{\displaystyle x\in X} is such thatb(x,)=0{\displaystyle b(x,\,\cdot \,)=0} thenx=0{\displaystyle x=0}; or equivalently, for all non-zeroxX{\displaystyle x\in X}, the mapb(x,):YK{\displaystyle b(x,\,\cdot \,):Y\to \mathbb {K} } is not identically0{\displaystyle 0} (i.e. there exists ayY{\displaystyle y\in Y} such thatb(x,y)0{\displaystyle b(x,y)\neq 0} for eachxX{\displaystyle x\in X});
  2. X{\displaystyle X}separates (distinguishes) points ofY{\displaystyle Y}: ifyY{\displaystyle y\in Y} is such thatb(,y)=0{\displaystyle b(\,\cdot \,,y)=0} theny=0{\displaystyle y=0}; or equivalently, for all non-zeroyY,{\displaystyle y\in Y,} the mapb(,y):XK{\displaystyle b(\,\cdot \,,y):X\to \mathbb {K} } is not identically0{\displaystyle 0} (i.e. there exists anxX{\displaystyle x\in X} such thatb(x,y)0{\displaystyle b(x,y)\neq 0} for eachyY{\displaystyle y\in Y}).

In this caseb{\displaystyle b} isnon-degenerate, and one can say thatb{\displaystyle b}placesX{\displaystyle X} andY{\displaystyle Y} in duality (or, redundantly but explicitly, inseparated duality), andb{\displaystyle b} is called theduality pairing of the triple(X,Y,b){\displaystyle (X,Y,b)}.[1][2]

Total subsets

[edit]

A subsetS{\displaystyle S} ofY{\displaystyle Y} is calledtotal if for everyxX{\displaystyle x\in X},b(x,s)=0 for all sS{\displaystyle b(x,s)=0\quad {\text{ for all }}s\in S} impliesx=0.{\displaystyle x=0.} A total subset ofX{\displaystyle X} is defined analogously (see footnote).[note 1] ThusX{\displaystyle X} separates points ofY{\displaystyle Y} if and only ifX{\displaystyle X} is a total subset ofX{\displaystyle X}, and similarly forY{\displaystyle Y}.

Orthogonality

[edit]

The vectorsx{\displaystyle x} andy{\displaystyle y} areorthogonal, writtenxy{\displaystyle x\perp y}, ifb(x,y)=0{\displaystyle b(x,y)=0}. Two subsetsRX{\displaystyle R\subseteq X} andSY{\displaystyle S\subseteq Y} areorthogonal, writtenRS{\displaystyle R\perp S}, ifb(R,S)={0}{\displaystyle b(R,S)=\{0\}}; that is, ifb(r,s)=0{\displaystyle b(r,s)=0} for allrR{\displaystyle r\in R} andsS{\displaystyle s\in S}. The definition of a subset being orthogonal to a vector is definedanalogously.

Theorthogonal complement orannihilator of a subsetRX{\displaystyle R\subseteq X} isR:={yY:Ry}:={yY:b(R,y)={0}}{\displaystyle R^{\perp }:=\{y\in Y:R\perp y\}:=\{y\in Y:b(R,y)=\{0\}\}}ThusR{\displaystyle R} is a total subset ofX{\displaystyle X} if and only ifR{\displaystyle R^{\perp }} equals{0}{\displaystyle \{0\}}.

Polar sets

[edit]
Main article:Polar set

Given a triple(X,Y,b){\displaystyle (X,Y,b)} defining a pairing overK{\displaystyle \mathbb {K} }, theabsolute polar set orpolar set of a subsetA{\displaystyle A} ofX{\displaystyle X} is the set:A:={yY:supxA|b(x,y)|1}.{\displaystyle A^{\circ }:=\left\{y\in Y:\sup _{x\in A}|b(x,y)|\leq 1\right\}.}Symmetrically, the absolute polar set or polar set of a subsetB{\displaystyle B} ofY{\displaystyle Y} is denoted byB{\displaystyle B^{\circ }} and defined byB:={xX:supyB|b(x,y)|1}.{\displaystyle B^{\circ }:=\left\{x\in X:\sup _{y\in B}|b(x,y)|\leq 1\right\}.}


To use bookkeeping that helps keep track of the anti-symmetry of the two sides of the duality, the absolute polar of a subsetB{\displaystyle B} ofY{\displaystyle Y} may also be called theabsolute prepolar orprepolar ofB{\displaystyle B} and then may be denoted byB{\displaystyle ^{\circ }B}.[3]

The polarB{\displaystyle B^{\circ }} is necessarily aconvex set containing0Y{\displaystyle 0\in Y} where ifB{\displaystyle B} is balanced then so isB{\displaystyle B^{\circ }} and ifB{\displaystyle B} is a vector subspace ofX{\displaystyle X} then so too isB{\displaystyle B^{\circ }} a vector subspace ofY.{\displaystyle Y.}[4]

IfA{\displaystyle A} is a vector subspace ofX,{\displaystyle X,} thenA=A{\displaystyle A^{\circ }=A^{\perp }} and this is also equal to thereal polar ofA.{\displaystyle A.} IfAX{\displaystyle A\subseteq X} then thebipolar ofA{\displaystyle A}, denotedA{\displaystyle A^{\circ \circ }}, is the polar of the orthogonal complement ofA{\displaystyle A}, i.e., the set(A).{\displaystyle {}^{\circ }\left(A^{\perp }\right).} Similarly, ifBY{\displaystyle B\subseteq Y} then the bipolar ofB{\displaystyle B} isB:=(B).{\displaystyle B^{\circ \circ }:=\left({}^{\circ }B\right)^{\circ }.}

Dual definitions and results

[edit]

Given a pairing(X,Y,b),{\displaystyle (X,Y,b),} define a new pairing(Y,X,d){\displaystyle (Y,X,d)} whered(y,x):=b(x,y){\displaystyle d(y,x):=b(x,y)} for allxX{\displaystyle x\in X} andyY{\displaystyle y\in Y}.[1]

There is a consistent theme in duality theory that any definition for a pairing(X,Y,b){\displaystyle (X,Y,b)} has a corresponding dual definition for the pairing(Y,X,d).{\displaystyle (Y,X,d).}

Convention and Definition: Given any definition for a pairing(X,Y,b),{\displaystyle (X,Y,b),} one obtains adual definition by applying it to the pairing(Y,X,d).{\displaystyle (Y,X,d).} These conventions also apply to theorems.

For instance, if "X{\displaystyle X} distinguishes points ofY{\displaystyle Y}" (resp, "S{\displaystyle S} is a total subset ofY{\displaystyle Y}") is defined as above, then this convention immediately produces the dual definition of "Y{\displaystyle Y} distinguishes points ofX{\displaystyle X}" (resp, "S{\displaystyle S} is a total subset ofX{\displaystyle X}").

This following notation is almost ubiquitous and allows us to avoid assigning a symbol tod.{\displaystyle d.}

Convention and Notation: If a definition and its notation for a pairing(X,Y,b){\displaystyle (X,Y,b)} depends on the order ofX{\displaystyle X} andY{\displaystyle Y} (for example, the definition of theMackey topologyτ(X,Y,b){\displaystyle \tau (X,Y,b)} onX{\displaystyle X}) then by switching the order ofX{\displaystyle X} andY,{\displaystyle Y,} then it is meant that definition applied to(Y,X,d){\displaystyle (Y,X,d)} (continuing the same example, the topologyτ(Y,X,b){\displaystyle \tau (Y,X,b)} would actually denote the topologyτ(Y,X,d){\displaystyle \tau (Y,X,d)}).

For another example, once the weak topology onX{\displaystyle X} is defined, denoted byσ(X,Y,b){\displaystyle \sigma (X,Y,b)}, then this dual definition would automatically be applied to the pairing(Y,X,d){\displaystyle (Y,X,d)} so as to obtain the definition of the weak topology onY{\displaystyle Y}, and this topology would be denoted byσ(Y,X,b){\displaystyle \sigma (Y,X,b)} rather thanσ(Y,X,d){\displaystyle \sigma (Y,X,d)}.

Identification of(X,Y){\displaystyle (X,Y)} with(Y,X){\displaystyle (Y,X)}

[edit]

Although it is technically incorrect and an abuse of notation, this article will adhere to the nearly ubiquitous convention of treating a pairing(X,Y,b){\displaystyle (X,Y,b)} interchangeably with(Y,X,d){\displaystyle (Y,X,d)} and also of denoting(Y,X,d){\displaystyle (Y,X,d)} by(Y,X,b).{\displaystyle (Y,X,b).}

Examples

[edit]

Restriction of a pairing

[edit]

Suppose that(X,Y,b){\displaystyle (X,Y,b)} is a pairing,M{\displaystyle M} is a vector subspace ofX,{\displaystyle X,} andN{\displaystyle N} is a vector subspace ofY{\displaystyle Y}. Then therestriction of(X,Y,b){\displaystyle (X,Y,b)} toM×N{\displaystyle M\times N} is the pairing(M,N,b|M×N).{\displaystyle \left(M,N,b{\big \vert }_{M\times N}\right).} If(X,Y,b){\displaystyle (X,Y,b)} is a duality, then it's possible for a restriction to fail to be a duality (e.g. ifY{0}{\displaystyle Y\neq \{0\}} andN={0}{\displaystyle N=\{0\}}).

This article will use the common practice of denoting the restriction(M,N,b|M×N){\displaystyle \left(M,N,b{\big \vert }_{M\times N}\right)} by(M,N,b).{\displaystyle (M,N,b).}

Canonical duality on a vector space

[edit]

Suppose thatX{\displaystyle X} is a vector space and letX#{\displaystyle X^{\#}} denote thealgebraic dual space ofX{\displaystyle X} (that is, the space of all linear functionals onX{\displaystyle X}). There is a canonical duality(X,X#,c){\displaystyle \left(X,X^{\#},c\right)} wherec(x,x)=x,x=x(x),{\displaystyle c\left(x,x^{\prime }\right)=\left\langle x,x^{\prime }\right\rangle =x^{\prime }(x),} which is called theevaluation map or thenatural orcanonical bilinear functional onX×X#.{\displaystyle X\times X^{\#}.} Note in particular that for anyxX#,{\displaystyle x^{\prime }\in X^{\#},}c(,x){\displaystyle c\left(\,\cdot \,,x^{\prime }\right)} is just another way of denotingx{\displaystyle x^{\prime }}; i.e.c(,x)=x()=x.{\displaystyle c\left(\,\cdot \,,x^{\prime }\right)=x^{\prime }(\,\cdot \,)=x^{\prime }.}

IfN{\displaystyle N} is a vector subspace ofX#{\displaystyle X^{\#}}, then the restriction of(X,X#,c){\displaystyle \left(X,X^{\#},c\right)} toX×N{\displaystyle X\times N} is called thecanonical pairing where if this pairing is a duality then it is instead called thecanonical duality. Clearly,X{\displaystyle X} always distinguishes points ofN{\displaystyle N}, so the canonical pairing is a dual system if and only ifN{\displaystyle N} separates points ofX.{\displaystyle X.} The following notation is now nearly ubiquitous in duality theory.

The evaluation map will be denoted byx,x=x(x){\displaystyle \left\langle x,x^{\prime }\right\rangle =x^{\prime }(x)} (rather than byc{\displaystyle c}) andX,N{\displaystyle \langle X,N\rangle } will be written rather than(X,N,c).{\displaystyle (X,N,c).}

Assumption: As is common practice, ifX{\displaystyle X} is a vector space andN{\displaystyle N} is a vector space of linear functionals onX,{\displaystyle X,} then unless stated otherwise, it will be assumed that they are associated with the canonical pairingX,N.{\displaystyle \langle X,N\rangle .}

IfN{\displaystyle N} is a vector subspace ofX#{\displaystyle X^{\#}} thenX{\displaystyle X} distinguishes points ofN{\displaystyle N} (or equivalently,(X,N,c){\displaystyle (X,N,c)} is a duality) if and only ifN{\displaystyle N} distinguishes points ofX,{\displaystyle X,} or equivalently ifN{\displaystyle N} is total (that is,n(x)=0{\displaystyle n(x)=0} for allnN{\displaystyle n\in N} impliesx=0{\displaystyle x=0}).[1]

Canonical duality on a topological vector space

[edit]

SupposeX{\displaystyle X} is atopological vector space (TVS) withcontinuous dual spaceX.{\displaystyle X^{\prime }.} Then the restriction of the canonical duality(X,X#,c){\displaystyle \left(X,X^{\#},c\right)} toX{\displaystyle X} ×X{\displaystyle X^{\prime }} defines a pairing(X,X,c|X×X){\displaystyle \left(X,X^{\prime },c{\big \vert }_{X\times X^{\prime }}\right)} for whichX{\displaystyle X} separates points ofX.{\displaystyle X^{\prime }.} IfX{\displaystyle X^{\prime }} separates points ofX{\displaystyle X} (which is true if, for instance,X{\displaystyle X} is a Hausdorff locally convex space) then this pairing forms a duality.[2]

Assumption: As is commonly done, wheneverX{\displaystyle X} is a TVS, then unless indicated otherwise, it will be assumed without comment that it's associated with the canonical pairingX,X.{\displaystyle \left\langle X,X^{\prime }\right\rangle .}

Polars and duals of TVSs

[edit]

The following result shows that thecontinuous linear functionals on a TVS are exactly those linear functionals that are bounded on a neighborhood of the origin.

Theorem[1]LetX{\displaystyle X} be a TVS with algebraic dualX#{\displaystyle X^{\#}} and letN{\displaystyle {\mathcal {N}}} be a basis of neighborhoods ofX{\displaystyle X} at the origin. Under the canonical dualityX,X#,{\displaystyle \left\langle X,X^{\#}\right\rangle ,} the continuous dual space ofX{\displaystyle X} is the union of allN{\displaystyle N^{\circ }} asN{\displaystyle N} ranges overN{\displaystyle {\mathcal {N}}} (where the polars are taken inX#{\displaystyle X^{\#}}).

Inner product spaces and complex conjugate spaces

[edit]

Apre-Hilbert space(H,,){\displaystyle (H,\langle \cdot ,\cdot \rangle )} is a dual pairing if and only ifH{\displaystyle H} is vector space overR{\displaystyle \mathbb {R} } orH{\displaystyle H} has dimension0.{\displaystyle 0.} Here it is assumed that thesesquilinear form,{\displaystyle \langle \cdot ,\cdot \rangle } isconjugate homogeneous in its second coordinate and homogeneous in its first coordinate.

Suppose that(H,,){\displaystyle (H,\langle \cdot ,\cdot \rangle )} is a complex pre-Hilbert space with scalar multiplication denoted as usual by juxtaposition or by a dot.{\displaystyle \cdot .} Define the map:C×HH by cx:=c¯x,{\displaystyle \,\cdot \,\perp \,\cdot \,:\mathbb {C} \times H\to H\quad {\text{ by }}\quad c\perp x:={\overline {c}}x,}where the right-hand side uses the scalar multiplication ofH.{\displaystyle H.} LetH¯{\displaystyle {\overline {H}}} denote thecomplex conjugate vector space ofH,{\displaystyle H,} whereH¯{\displaystyle {\overline {H}}} denotes the additive group of(H,+){\displaystyle (H,+)} (so vector addition inH¯{\displaystyle {\overline {H}}} is identical to vector addition inH{\displaystyle H}) but with scalar multiplication inH¯{\displaystyle {\overline {H}}} being the map{\displaystyle \,\cdot \,\perp \,\cdot \,} (instead of the scalar multiplication thatH{\displaystyle H} is endowed with).

The mapb:H×H¯C{\displaystyle b:H\times {\overline {H}}\to \mathbb {C} } defined byb(x,y):=x,y{\displaystyle b(x,y):=\langle x,y\rangle } is linear in both coordinates[note 2] and so(H,H¯,,){\displaystyle \left(H,{\overline {H}},\langle \cdot ,\cdot \rangle \right)} forms a dual pairing.

Other examples

[edit]

Weak topology

[edit]
Main articles:Weak topology andWeak-* topology

Suppose that(X,Y,b){\displaystyle (X,Y,b)} is a pairing ofvector spaces overK.{\displaystyle \mathbb {K} .} IfSY{\displaystyle S\subseteq Y} then theweak topology onX{\displaystyle X} induced byS{\displaystyle S} (andb{\displaystyle b}) is the weakest TVS topology onX,{\displaystyle X,} denoted byσ(X,S,b){\displaystyle \sigma (X,S,b)} or simplyσ(X,S),{\displaystyle \sigma (X,S),} making each mapb(,y):XK{\displaystyle b(\,\cdot \,,y):X\to \mathbb {K} } continuous as a function ofx{\displaystyle x} for everyyS{\displaystyle y\in S}.[1] IfS{\displaystyle S} is not clear from context then it should be assumed to be all ofY,{\displaystyle Y,} in which case it is called theweak topology onX{\displaystyle X} (induced byY{\displaystyle Y}). The notationXσ(X,S,b),{\displaystyle X_{\sigma (X,S,b)},}Xσ(X,S),{\displaystyle X_{\sigma (X,S)},} or (if no confusion could arise) simplyXσ{\displaystyle X_{\sigma }} is used to denoteX{\displaystyle X} endowed with the weak topologyσ(X,S,b).{\displaystyle \sigma (X,S,b).} Importantly, the weak topology dependsentirely on the functionb,{\displaystyle b,} the usual topology onC,{\displaystyle \mathbb {C} ,} andX{\displaystyle X}'svector space structure butnot on thealgebraic structures ofY.{\displaystyle Y.}

Similarly, ifRX{\displaystyle R\subseteq X} then the dual definition of theweaktopology onY{\displaystyle Y} induced byR{\displaystyle R} (andb{\displaystyle b}), which is denoted byσ(Y,R,b){\displaystyle \sigma (Y,R,b)} or simplyσ(Y,R){\displaystyle \sigma (Y,R)} (see footnote for details).[note 3]

Definition and Notation: If "σ(X,Y,b){\displaystyle \sigma (X,Y,b)}" is attached to a topological definition (e.g.σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-converges,σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded,clσ(X,Y,b)(S),{\displaystyle \operatorname {cl} _{\sigma (X,Y,b)}(S),} etc.) then it means that definition when the first space (i.e.X{\displaystyle X}) carries theσ(X,Y,b){\displaystyle \sigma (X,Y,b)} topology. Mention ofb{\displaystyle b} or evenX{\displaystyle X} andY{\displaystyle Y} may be omitted if no confusion arises. So, for instance, if a sequence(ai)i=1{\displaystyle \left(a_{i}\right)_{i=1}^{\infty }} inY{\displaystyle Y} "σ{\displaystyle \sigma }-converges" or "weakly converges" then this means that it converges in(Y,σ(Y,X,b)){\displaystyle (Y,\sigma (Y,X,b))} whereas if it were a sequence inX{\displaystyle X}, then this would mean that it converges in(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))}).

The topologyσ(X,Y,b){\displaystyle \sigma (X,Y,b)} islocally convex since it is determined by the family of seminormspy:XR{\displaystyle p_{y}:X\to \mathbb {R} } defined bypy(x):=|b(x,y)|,{\displaystyle p_{y}(x):=|b(x,y)|,} asy{\displaystyle y} ranges overY.{\displaystyle Y.}[1] IfxX{\displaystyle x\in X} and(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}} is anet inX,{\displaystyle X,} then(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}}σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-converges tox{\displaystyle x} if(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}} converges tox{\displaystyle x} in(X,σ(X,Y,b)).{\displaystyle (X,\sigma (X,Y,b)).}[1] A net(xi)iI{\displaystyle \left(x_{i}\right)_{i\in I}}σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-converges tox{\displaystyle x} if and only if for allyY,{\displaystyle y\in Y,}b(xi,y){\displaystyle b\left(x_{i},y\right)} converges tob(x,y).{\displaystyle b(x,y).} If(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} is a sequence oforthonormal vectors in Hilbert space, then(xi)i=1{\displaystyle \left(x_{i}\right)_{i=1}^{\infty }} converges weakly to 0 but does not norm-converge to 0 (or any other vector).[1]

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing andN{\displaystyle N} is a proper vector subspace ofY{\displaystyle Y} such that(X,N,b){\displaystyle (X,N,b)} is a dual pair, thenσ(X,N,b){\displaystyle \sigma (X,N,b)} is strictlycoarser thanσ(X,Y,b).{\displaystyle \sigma (X,Y,b).}[1]

Bounded subsets

[edit]

A subsetS{\displaystyle S} ofX{\displaystyle X} isσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded if and only ifsup|b(S,y)|< for all yY,{\displaystyle \sup _{}|b(S,y)|<\infty \quad {\text{ for all }}y\in Y,} whereb(S,y):={b(s,y):sS}.{\displaystyle b(S,y):=\{b(s,y):s\in S\}.}

Hausdorffness

[edit]

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing then the following are equivalent:

  1. X{\displaystyle X} distinguishes points ofY{\displaystyle Y};
  2. The mapyb(,y){\displaystyle y\mapsto b(\,\cdot \,,y)} defines aninjection fromY{\displaystyle Y} into the algebraic dual space ofX{\displaystyle X};[1]
  3. σ(Y,X,b){\displaystyle \sigma (Y,X,b)} isHausdorff.[1]

Weak representation theorem

[edit]

The following theorem is of fundamental importance to duality theory because it completely characterizes the continuous dual space of(X,σ(X,Y,b)).{\displaystyle (X,\sigma (X,Y,b)).}

Weak representation theorem[1]Let(X,Y,b){\displaystyle (X,Y,b)} be a pairing over the fieldK.{\displaystyle \mathbb {K} .} Then thecontinuous dual space of(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} isb(,Y):={b(,y):yY}.{\displaystyle b(\,\cdot \,,Y):=\{b(\,\cdot \,,y):y\in Y\}.} Furthermore,

  1. Iff{\displaystyle f} is acontinuous linear functional on(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} then there exists someyY{\displaystyle y\in Y} such thatf=b(,y){\displaystyle f=b(\,\cdot \,,y)}; if such ay{\displaystyle y} exists then it is unique if and only ifX{\displaystyle X} distinguishes points ofY.{\displaystyle Y.}
  2. The continuous dual space of(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} may be identified with the quotient spaceY/X,{\displaystyle Y/X^{\perp },} whereX:={yY:b(x,y)=0 for all xX}.{\displaystyle X^{\perp }:=\{y\in Y:b(x,y)=0{\text{ for all }}x\in X\}.}

Consequently, thecontinuous dual space of(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} is(X,σ(X,Y,b))=b(,Y):={b(,y):yY}.{\displaystyle (X,\sigma (X,Y,b))^{\prime }=b(\,\cdot \,,Y):=\left\{b(\,\cdot \,,y):y\in Y\right\}.}

With respect to the canonical pairing, ifX{\displaystyle X} is a TVS whose continuous dual spaceX{\displaystyle X^{\prime }} separates points onX{\displaystyle X} (i.e. such that(X,σ(X,X)){\displaystyle \left(X,\sigma \left(X,X^{\prime }\right)\right)} is Hausdorff, which implies thatX{\displaystyle X} is also necessarily Hausdorff) then the continuous dual space of(X,σ(X,X)){\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right)} is equal to the set of all "evaluation at a pointx{\displaystyle x}" maps asx{\displaystyle x} ranges overX{\displaystyle X} (i.e. the map that sendxX{\displaystyle x^{\prime }\in X^{\prime }} tox(x){\displaystyle x^{\prime }(x)}). This is commonly written as(X,σ(X,X))=X or (Xσ)=X.{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right)^{\prime }=X\qquad {\text{ or }}\qquad \left(X_{\sigma }^{\prime }\right)^{\prime }=X.}This very important fact is why results for polar topologies on continuous dual spaces, such as thestrong dual topologyβ(X,X){\displaystyle \beta \left(X^{\prime },X\right)} onX{\displaystyle X^{\prime }} for example, can also often be applied to the original TVSX{\displaystyle X}; for instance,X{\displaystyle X} being identified with(Xσ){\displaystyle \left(X_{\sigma }^{\prime }\right)^{\prime }} means that the topologyβ((Xσ),Xσ){\displaystyle \beta \left(\left(X_{\sigma }^{\prime }\right)^{\prime },X_{\sigma }^{\prime }\right)} on(Xσ){\displaystyle \left(X_{\sigma }^{\prime }\right)^{\prime }} can instead be thought of as a topology onX.{\displaystyle X.} Moreover, ifX{\displaystyle X^{\prime }} is endowed with a topology that isfiner thanσ(X,X){\displaystyle \sigma \left(X^{\prime },X\right)} then the continuous dual space ofX{\displaystyle X^{\prime }} will necessarily contain(Xσ){\displaystyle \left(X_{\sigma }^{\prime }\right)^{\prime }} as a subset. So for instance, whenX{\displaystyle X^{\prime }} is endowed with the strong dual topology (and so is denoted byXβ{\displaystyle X_{\beta }^{\prime }}) then(Xβ)  (Xσ) = X{\displaystyle \left(X_{\beta }^{\prime }\right)^{\prime }~\supseteq ~\left(X_{\sigma }^{\prime }\right)^{\prime }~=~X}which (among other things) allows forX{\displaystyle X} to be endowed with the subspace topology induced on it by, say, the strong dual topologyβ((Xβ),Xβ){\displaystyle \beta \left(\left(X_{\beta }^{\prime }\right)^{\prime },X_{\beta }^{\prime }\right)} (this topology is also called the strongbidual topology and it appears in the theory ofreflexive spaces: the Hausdorff locally convex TVSX{\displaystyle X} is said to besemi-reflexive if(Xβ)=X{\displaystyle \left(X_{\beta }^{\prime }\right)^{\prime }=X} and it will be calledreflexive if in addition the strong bidual topologyβ((Xβ),Xβ){\displaystyle \beta \left(\left(X_{\beta }^{\prime }\right)^{\prime },X_{\beta }^{\prime }\right)} onX{\displaystyle X} is equal toX{\displaystyle X}'s original/starting topology).

Orthogonals, quotients, and subspaces

[edit]

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing then for any subsetS{\displaystyle S} ofX{\displaystyle X}:

IfX{\displaystyle X} is a normed space then under the canonical duality,S{\displaystyle S^{\perp }} is norm closed inX{\displaystyle X^{\prime }} andS⊥⊥{\displaystyle S^{\perp \perp }} is norm closed inX.{\displaystyle X.}[1]

Subspaces

[edit]

Suppose thatM{\displaystyle M} is a vector subspace ofX{\displaystyle X} and let(M,Y,b){\displaystyle (M,Y,b)} denote the restriction of(X,Y,b){\displaystyle (X,Y,b)} toM×Y.{\displaystyle M\times Y.} The weak topologyσ(M,Y,b){\displaystyle \sigma (M,Y,b)} onM{\displaystyle M} is identical to thesubspace topology thatM{\displaystyle M} inherits from(X,σ(X,Y,b)).{\displaystyle (X,\sigma (X,Y,b)).}

Also,(M,Y/M,b|M){\displaystyle \left(M,Y/M^{\perp },b{\big \vert }_{M}\right)} is a paired space (whereY/M{\displaystyle Y/M^{\perp }} meansY/(M){\displaystyle Y/\left(M^{\perp }\right)}) whereb|M:M×Y/MK{\displaystyle b{\big \vert }_{M}:M\times Y/M^{\perp }\to \mathbb {K} } is defined by(m,y+M)b(m,y).{\displaystyle \left(m,y+M^{\perp }\right)\mapsto b(m,y).}

The topologyσ(M,Y/M,b|M){\displaystyle \sigma \left(M,Y/M^{\perp },b{\big \vert }_{M}\right)} is equal to thesubspace topology thatM{\displaystyle M} inherits from(X,σ(X,Y,b)).{\displaystyle (X,\sigma (X,Y,b)).}[5] Furthermore, if(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} is a dual system then so is(M,Y/M,b|M).{\displaystyle \left(M,Y/M^{\perp },b{\big \vert }_{M}\right).}[5]

Quotients

[edit]

Suppose thatM{\displaystyle M} is a vector subspace ofX.{\displaystyle X.} Then(X/M,M,b/M){\displaystyle \left(X/M,M^{\perp },b/M\right)} is a paired space whereb/M:X/M×MK{\displaystyle b/M:X/M\times M^{\perp }\to \mathbb {K} } is defined by(x+M,y)b(x,y).{\displaystyle (x+M,y)\mapsto b(x,y).}

The topologyσ(X/M,M){\displaystyle \sigma \left(X/M,M^{\perp }\right)} is identical to the usualquotient topology induced by(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} onX/M.{\displaystyle X/M.}[5]

Polars and the weak topology

[edit]

IfX{\displaystyle X} is a locally convex space and ifH{\displaystyle H} is a subset of the continuous dual spaceX,{\displaystyle X^{\prime },} thenH{\displaystyle H} isσ(X,X){\displaystyle \sigma \left(X^{\prime },X\right)}-bounded if and only ifHB{\displaystyle H\subseteq B^{\circ }} for somebarrelB{\displaystyle B} inX.{\displaystyle X.}[1]

The following results are important for defining polar topologies.

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing andAX,{\displaystyle A\subseteq X,} then:[1]

  1. The polarA{\displaystyle A^{\circ }} ofA{\displaystyle A} is a closed subset of(Y,σ(Y,X,b)).{\displaystyle (Y,\sigma (Y,X,b)).}
  2. The polars of the following sets are identical: (a)A{\displaystyle A}; (b) the convex hull ofA{\displaystyle A}; (c) thebalanced hull ofA{\displaystyle A}; (d) theσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-closure ofA{\displaystyle A}; (e) theσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-closure of theconvex balanced hull ofA.{\displaystyle A.}
  3. Thebipolar theorem: The bipolar ofA,{\displaystyle A,} denoted byA,{\displaystyle A^{\circ \circ },} is equal to theσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-closure of the convex balanced hull ofA.{\displaystyle A.}
  4. A{\displaystyle A} isσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded if and only ifA{\displaystyle A^{\circ }} isabsorbing inY.{\displaystyle Y.}
  5. If in additionY{\displaystyle Y} distinguishes points ofX{\displaystyle X} thenA{\displaystyle A} isσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded if and only if it isσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-totally bounded.

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing andτ{\displaystyle \tau } is a locally convex topology onX{\displaystyle X} that is consistent with duality, then a subsetB{\displaystyle B} ofX{\displaystyle X} is abarrel in(X,τ){\displaystyle (X,\tau )} if and only ifB{\displaystyle B} is thepolar of someσ(Y,X,b){\displaystyle \sigma (Y,X,b)}-bounded subset ofY.{\displaystyle Y.}[6]

Transposes

[edit]

Transposes of a linear map with respect to pairings

[edit]
See also:Transpose of a linear map,Transpose, andTranspose § Transposes of linear maps and bilinear forms

Let(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)} be pairings overK{\displaystyle \mathbb {K} } and letF:XW{\displaystyle F:X\to W} be a linear map.

For allzZ,{\displaystyle z\in Z,} letc(F(),z):XK{\displaystyle c(F(\,\cdot \,),z):X\to \mathbb {K} } be the map defined byxc(F(x),z).{\displaystyle x\mapsto c(F(x),z).} It is said thatF{\displaystyle F}'stranspose oradjoint is well-defined if the following conditions are satisfied:

  1. X{\displaystyle X} distinguishes points ofY{\displaystyle Y} (or equivalently, the mapyb(,y){\displaystyle y\mapsto b(\,\cdot \,,y)} fromY{\displaystyle Y} into the algebraic dualX#{\displaystyle X^{\#}} isinjective), and
  2. c(F(),Z)b(,Y),{\displaystyle c(F(\,\cdot \,),Z)\subseteq b(\,\cdot \,,Y),} wherec(F(),Z):={c(F(),z):zZ}{\displaystyle c(F(\,\cdot \,),Z):=\{c(F(\,\cdot \,),z):z\in Z\}} andb(,Y):={b(,y):yY}{\displaystyle b(\,\cdot \,,Y):=\{b(\,\cdot \,,y):y\in Y\}}.

In this case, for anyzZ{\displaystyle z\in Z} there exists (by condition 2) a unique (by condition 1)yY{\displaystyle y\in Y} such thatc(F(),z)=b(,y){\displaystyle c(F(\,\cdot \,),z)=b(\,\cdot \,,y)}), where this element ofY{\displaystyle Y} will be denoted bytF(z).{\displaystyle {}^{t}F(z).} This defines a linear maptF:ZY{\displaystyle {}^{t}F:Z\to Y}

called thetranspose oradjoint ofF{\displaystyle F} with respect to(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)} (this should not be confused with theHermitian adjoint). It is easy to see that the two conditions mentioned above (i.e. for "the transpose is well-defined") are also necessary fortF{\displaystyle {}^{t}F} to be well-defined. For everyzZ,{\displaystyle z\in Z,} the defining condition fortF(z){\displaystyle {}^{t}F(z)} isc(F(),z)=b(,tF(z)),{\displaystyle c(F(\,\cdot \,),z)=b\left(\,\cdot \,,{}^{t}F(z)\right),} that is,c(F(x),z)=b(x,tF(z)){\displaystyle c(F(x),z)=b\left(x,{}^{t}F(z)\right)}      for allxX.{\displaystyle x\in X.}

By the conventions mentioned at the beginning of this article, this also defines the transpose of linear maps of the formZY,{\displaystyle Z\to Y,}[note 4]XZ,{\displaystyle X\to Z,}[note 5]WY,{\displaystyle W\to Y,}[note 6]YW,{\displaystyle Y\to W,}[note 7] etc. (see footnote).

Properties of the transpose

[edit]

Throughout,(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)} be pairings overK{\displaystyle \mathbb {K} } andF:XW{\displaystyle F:X\to W} will be a linear map whose transposetF:ZY{\displaystyle {}^{t}F:Z\to Y} is well-defined.

These results hold when thereal polar is used in place of the absolute polar.

IfX{\displaystyle X} andY{\displaystyle Y} are normed spaces under their canonical dualities and ifF:XY{\displaystyle F:X\to Y} is a continuous linear map, thenF=tF.{\displaystyle \|F\|=\left\|{}^{t}F\right\|.}[1]

Weak continuity

[edit]

A linear mapF:XW{\displaystyle F:X\to W} isweakly continuous (with respect to(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)}) ifF:(X,σ(X,Y,b))(W,(W,Z,c)){\displaystyle F:(X,\sigma (X,Y,b))\to (W,(W,Z,c))} is continuous.

The following result shows that the existence of the transpose map is intimately tied to the weak topology.

PropositionAssume thatX{\displaystyle X} distinguishes points ofY{\displaystyle Y} andF:XW{\displaystyle F:X\to W} is a linear map. Then the following are equivalent:

  1. F{\displaystyle F} is weakly continuous (that is,F:(X,σ(X,Y,b))(W,(W,Z,c)){\displaystyle F:(X,\sigma (X,Y,b))\to (W,(W,Z,c))} is continuous);
  2. c(F(),Z)b(,Y){\displaystyle c(F(\,\cdot \,),Z)\subseteq b(\,\cdot \,,Y)};
  3. the transpose ofF{\displaystyle F} is well-defined.

IfF{\displaystyle F} is weakly continuous then

Weak topology and the canonical duality

[edit]

Suppose thatX{\displaystyle X} is a vector space and thatX#{\displaystyle X^{\#}} is its the algebraic dual. Then everyσ(X,X#){\displaystyle \sigma \left(X,X^{\#}\right)}-bounded subset ofX{\displaystyle X} is contained in a finite dimensional vector subspace and every vector subspace ofX{\displaystyle X} isσ(X,X#){\displaystyle \sigma \left(X,X^{\#}\right)}-closed.[1]

Weak completeness

[edit]

If(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} is acomplete topological vector space say thatX{\displaystyle X} isσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-complete or (if no ambiguity can arise)weakly-complete. There existBanach spaces that are not weakly-complete (despite being complete in their norm topology).[1]

IfX{\displaystyle X} is a vector space then under the canonical duality,(X#,σ(X#,X)){\displaystyle \left(X^{\#},\sigma \left(X^{\#},X\right)\right)} is complete.[1] Conversely, ifZ{\displaystyle Z} is a Hausdorfflocally convex TVS with continuous dual spaceZ,{\displaystyle Z^{\prime },} then(Z,σ(Z,Z)){\displaystyle \left(Z,\sigma \left(Z,Z^{\prime }\right)\right)} is complete if and only ifZ=(Z)#{\displaystyle Z=\left(Z^{\prime }\right)^{\#}}; that is, if and only if the mapZ(Z)#{\displaystyle Z\to \left(Z^{\prime }\right)^{\#}} defined by sendingzZ{\displaystyle z\in Z} to the evaluation map atz{\displaystyle z} (i.e.zz(z){\displaystyle z^{\prime }\mapsto z^{\prime }(z)}) is a bijection.[1]

In particular, with respect to the canonical duality, ifY{\displaystyle Y} is a vector subspace ofX#{\displaystyle X^{\#}} such thatY{\displaystyle Y} separates points ofX,{\displaystyle X,} then(Y,σ(Y,X)){\displaystyle (Y,\sigma (Y,X))} is complete if and only ifY=X#.{\displaystyle Y=X^{\#}.} Said differently, there doesnot exist a proper vector subspaceYX#{\displaystyle Y\neq X^{\#}} ofX#{\displaystyle X^{\#}} such that(X,σ(X,Y)){\displaystyle (X,\sigma (X,Y))} is Hausdorff andY{\displaystyle Y} is complete in theweak-* topology (i.e. the topology of pointwise convergence). Consequently, when thecontinuous dual spaceX{\displaystyle X^{\prime }} of aHausdorfflocally convex TVSX{\displaystyle X} is endowed with theweak-* topology, thenXσ{\displaystyle X_{\sigma }^{\prime }} iscomplete if and only ifX=X#{\displaystyle X^{\prime }=X^{\#}} (that is, if and only ifevery linear functional onX{\displaystyle X} is continuous).

Identification ofY with a subspace of the algebraic dual

[edit]

IfX{\displaystyle X} distinguishes points ofY{\displaystyle Y} and ifZ{\displaystyle Z} denotes the range of the injectionyb(,y){\displaystyle y\mapsto b(\,\cdot \,,y)} thenZ{\displaystyle Z} is a vector subspace of thealgebraic dual space ofX{\displaystyle X} and the pairing(X,Y,b){\displaystyle (X,Y,b)} becomes canonically identified with the canonical pairingX,Z{\displaystyle \langle X,Z\rangle } (wherex,x:=x(x){\displaystyle \left\langle x,x^{\prime }\right\rangle :=x^{\prime }(x)} is the natural evaluation map). In particular, in this situation it will be assumedwithout loss of generality thatY{\displaystyle Y} is a vector subspace ofX{\displaystyle X}'s algebraic dual andb{\displaystyle b} is the evaluation map.

Convention: Often, wheneveryb(,y){\displaystyle y\mapsto b(\,\cdot \,,y)} is injective (especially when(X,Y,b){\displaystyle (X,Y,b)} forms a dual pair) then it is common practice to assumewithout loss of generality thatY{\displaystyle Y} is a vector subspace of the algebraic dual space ofX,{\displaystyle X,} thatb{\displaystyle b} is the natural evaluation map, and also denoteY{\displaystyle Y} byX.{\displaystyle X^{\prime }.}

In a completely analogous manner, ifY{\displaystyle Y} distinguishes points ofX{\displaystyle X} then it is possible forX{\displaystyle X} to be identified as a vector subspace ofY{\displaystyle Y}'s algebraic dual space.[2]

Algebraic adjoint

[edit]

In the special case where the dualities are the canonical dualitiesX,X#{\displaystyle \left\langle X,X^{\#}\right\rangle } andW,W#,{\displaystyle \left\langle W,W^{\#}\right\rangle ,} the transpose of a linear mapF:XW{\displaystyle F:X\to W} is always well-defined. This transpose is called thealgebraic adjoint ofF{\displaystyle F} and it will be denoted byF#{\displaystyle F^{\#}}; that is,F#=tF:W#X#.{\displaystyle F^{\#}={}^{t}F:W^{\#}\to X^{\#}.} In this case, for allwW#,{\displaystyle w^{\prime }\in W^{\#},}F#(w)=wF{\displaystyle F^{\#}\left(w^{\prime }\right)=w^{\prime }\circ F}[1][7] where the defining condition forF#(w){\displaystyle F^{\#}\left(w^{\prime }\right)} is:x,F#(w)=F(x),w for all >xX,{\displaystyle \left\langle x,F^{\#}\left(w^{\prime }\right)\right\rangle =\left\langle F(x),w^{\prime }\right\rangle \quad {\text{ for all }}>x\in X,} or equivalently,F#(w)(x)=w(F(x)) for all xX.{\displaystyle F^{\#}\left(w^{\prime }\right)(x)=w^{\prime }(F(x))\quad {\text{ for all }}x\in X.}

IfX=Y=Kn{\displaystyle X=Y=\mathbb {K} ^{n}} for some integern,{\displaystyle n,}E={e1,,en}{\displaystyle {\mathcal {E}}=\left\{e_{1},\ldots ,e_{n}\right\}} is a basis forX{\displaystyle X} withdual basisE={e1,,en},{\displaystyle {\mathcal {E}}^{\prime }=\left\{e_{1}^{\prime },\ldots ,e_{n}^{\prime }\right\},}F:KnKn{\displaystyle F:\mathbb {K} ^{n}\to \mathbb {K} ^{n}} is a linear operator, and the matrix representation ofF{\displaystyle F} with respect toE{\displaystyle {\mathcal {E}}} isM:=(fi,j),{\displaystyle M:=\left(f_{i,j}\right),} then the transpose ofM{\displaystyle M} is the matrix representation with respect toE{\displaystyle {\mathcal {E}}^{\prime }} ofF#.{\displaystyle F^{\#}.}

Weak continuity and openness

[edit]

Suppose thatX,Y{\displaystyle \left\langle X,Y\right\rangle } andW,Z{\displaystyle \langle W,Z\rangle } are canonical pairings (soYX#{\displaystyle Y\subseteq X^{\#}} andZW#{\displaystyle Z\subseteq W^{\#}}) that are dual systems and letF:XW{\displaystyle F:X\to W} be a linear map. ThenF:XW{\displaystyle F:X\to W} is weakly continuous if and only if it satisfies any of the following equivalent conditions:[1]

  1. F:(X,σ(X,Y))(W,σ(W,Z)){\displaystyle F:(X,\sigma (X,Y))\to (W,\sigma (W,Z))} is continuous.
  2. F#(Z)Y{\displaystyle F^{\#}(Z)\subseteq Y}
  3. the transpose ofF,tF:ZY,{\displaystyle {}^{t}F:Z\to Y,} with respect toX,Y{\displaystyle \left\langle X,Y\right\rangle } andW,Z{\displaystyle \langle W,Z\rangle } is well-defined.

IfF{\displaystyle F} is weakly continuous thentF::(Z,σ(Z,W))(Y,σ(Y,X)){\displaystyle {}^{t}F::(Z,\sigma (Z,W))\to (Y,\sigma (Y,X))} will be continuous and furthermore,ttF=F{\displaystyle {}^{tt}F=F}[7]

A mapg:AB{\displaystyle g:A\to B} between topological spaces isrelatively open ifg:AImg{\displaystyle g:A\to \operatorname {Im} g} is anopen mapping, whereImg{\displaystyle \operatorname {Im} g} is the range ofg.{\displaystyle g.}[1]

Suppose thatX,Y{\displaystyle \langle X,Y\rangle } andW,Z{\displaystyle \langle W,Z\rangle } are dual systems andF:XW{\displaystyle F:X\to W} is a weakly continuous linear map. Then the following are equivalent:[1]

  1. F:(X,σ(X,Y))(W,σ(W,Z)){\displaystyle F:(X,\sigma (X,Y))\to (W,\sigma (W,Z))} is relatively open.
  2. The range oftF{\displaystyle {}^{t}F} isσ(Y,X){\displaystyle \sigma (Y,X)}-closed inY{\displaystyle Y};
  3. ImtF=(kerF){\displaystyle \operatorname {Im} {}^{t}F=(\operatorname {ker} F)^{\perp }}

Furthermore,

Transpose of a map between TVSs
[edit]

The transpose of map between two TVSs is defined if and only ifF{\displaystyle F} is weakly continuous.

IfF:XY{\displaystyle F:X\to Y} is a linear map between two Hausdorff locally convex topological vector spaces, then:[1]

Metrizability and separability

[edit]

LetX{\displaystyle X} be alocally convex space with continuous dual spaceX{\displaystyle X^{\prime }} and letKX.{\displaystyle K\subseteq X^{\prime }.}[1]

  1. IfK{\displaystyle K} isequicontinuous orσ(X,X){\displaystyle \sigma \left(X^{\prime },X\right)}-compact, and ifDX{\displaystyle D\subseteq X^{\prime }} is such thatspanD{\displaystyle \operatorname {span} D} is dense inX,{\displaystyle X,} then the subspace topology thatK{\displaystyle K} inherits from(X,σ(X,D)){\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },D\right)\right)} is identical to the subspace topology thatK{\displaystyle K} inherits from(X,σ(X,X)).{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right).}
  2. IfX{\displaystyle X} isseparable andK{\displaystyle K} is equicontinuous thenK,{\displaystyle K,} when endowed with the subspace topology induced by(X,σ(X,X)),{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right),} ismetrizable.
  3. IfX{\displaystyle X} is separable andmetrizable, then(X,σ(X,X)){\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right)} is separable.
  4. IfX{\displaystyle X} is a normed space thenX{\displaystyle X} is separable if and only if the closed unit call the continuous dual space ofX{\displaystyle X} is metrizable when given the subspace topology induced by(X,σ(X,X)).{\displaystyle \left(X^{\prime },\sigma \left(X^{\prime },X\right)\right).}
  5. IfX{\displaystyle X} is a normed space whose continuous dual space is separable (when given the usual norm topology), thenX{\displaystyle X} is separable.

Polar topologies and topologies compatible with pairing

[edit]
Main article:Polar topology

Starting with only the weak topology, the use ofpolar sets produces a range of locally convex topologies. Such topologies are calledpolar topologies. The weak topology is theweakest topology of this range.

Throughout,(X,Y,b){\displaystyle (X,Y,b)} will be a pairing overK{\displaystyle \mathbb {K} } andG{\displaystyle {\mathcal {G}}} will be a non-empty collection ofσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded subsets ofX.{\displaystyle X.}

Polar topologies

[edit]
Main article:Polar topology

Given a collectionG{\displaystyle {\mathcal {G}}} of subsets ofX{\displaystyle X}, thepolar topology onY{\displaystyle Y} determined byG{\displaystyle {\mathcal {G}}} (andb{\displaystyle b}) or theG{\displaystyle {\mathcal {G}}}-topology onY{\displaystyle Y} is the uniquetopological vector space (TVS) topology onY{\displaystyle Y} for which{rG:GG,r>0}{\displaystyle \left\{rG^{\circ }:G\in {\mathcal {G}},r>0\right\}}forms asubbasis of neighborhoods at the origin.[1] WhenY{\displaystyle Y} is endowed with thisG{\displaystyle {\mathcal {G}}}-topology then it is denoted byYG{\displaystyle {\mathcal {G}}}. Every polar topology is necessarilylocally convex.[1] WhenG{\displaystyle {\mathcal {G}}} is adirected set with respect to subset inclusion (i.e. if for allG,KG{\displaystyle G,K\in {\mathcal {G}}} there exists someKG{\displaystyle K\in {\mathcal {G}}} such thatGHK{\displaystyle G\cup H\subseteq K}) then this neighborhood subbasis at 0 actually forms aneighborhood basis at 0.[1]

The following table lists some of the more important polar topologies.

Notation: IfΔ(X,Y,b){\displaystyle \Delta (X,Y,b)} denotes a polar topology onY{\displaystyle Y} thenY{\displaystyle Y} endowed with this topology will be denoted byYΔ(Y,X,b),{\displaystyle Y_{\Delta (Y,X,b)},}YΔ(Y,X){\displaystyle Y_{\Delta (Y,X)}} or simplyYΔ{\displaystyle Y_{\Delta }} (e.g. forσ(Y,X,b){\displaystyle \sigma (Y,X,b)} we'd haveΔ=σ{\displaystyle \Delta =\sigma } so thatYσ(Y,X,b),{\displaystyle Y_{\sigma (Y,X,b)},}Yσ(Y,X){\displaystyle Y_{\sigma (Y,X)}} andYσ{\displaystyle Y_{\sigma }} all denoteY{\displaystyle Y} endowed withσ(X,Y,b){\displaystyle \sigma (X,Y,b)}).
GPX{\displaystyle {\mathcal {G}}\subseteq {\mathcal {P}}X}
("topology of uniform convergence on ...")
NotationName ("topology of...")Alternative name
finite subsets ofX{\displaystyle X}
(orσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-closeddisked hulls of finite subsets ofX{\displaystyle X})
σ(X,Y,b){\displaystyle \sigma (X,Y,b)}
s(X,Y,b){\displaystyle s(X,Y,b)}
pointwise/simple convergenceweak/weak* topology
σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-compactdisksτ(X,Y,b){\displaystyle \tau (X,Y,b)}Mackey topology
σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-compact convex subsetsγ(X,Y,b){\displaystyle \gamma (X,Y,b)}compact convex convergence
σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-compact subsets
(or balancedσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-compact subsets)
c(X,Y,b){\displaystyle c(X,Y,b)}compact convergence
σ(X,Y,b){\displaystyle \sigma (X,Y,b)}-bounded subsetsb(X,Y,b){\displaystyle b(X,Y,b)}
β(X,Y,b){\displaystyle \beta (X,Y,b)}
bounded convergencestrong topology
Strongest polar topology

Definitions involving polar topologies

[edit]

Continuity

A linear mapF:XW{\displaystyle F:X\to W} isMackey continuous (with respect to(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)}) ifF:(X,τ(X,Y,b))(W,τ(W,Z,c)){\displaystyle F:(X,\tau (X,Y,b))\to (W,\tau (W,Z,c))} is continuous.[1]

A linear mapF:XW{\displaystyle F:X\to W} isstrongly continuous (with respect to(X,Y,b){\displaystyle (X,Y,b)} and(W,Z,c){\displaystyle (W,Z,c)}) ifF:(X,β(X,Y,b))(W,β(W,Z,c)){\displaystyle F:(X,\beta (X,Y,b))\to (W,\beta (W,Z,c))} is continuous.[1]

Bounded subsets

[edit]

A subset ofX{\displaystyle X} isweakly bounded (resp.Mackey bounded,strongly bounded) if it is bounded in(X,σ(X,Y,b)){\displaystyle (X,\sigma (X,Y,b))} (resp. bounded in(X,τ(X,Y,b)),{\displaystyle (X,\tau (X,Y,b)),} bounded in(X,β(X,Y,b)){\displaystyle (X,\beta (X,Y,b))}).

Topologies compatible with a pair

[edit]

If(X,Y,b){\displaystyle (X,Y,b)} is a pairing overK{\displaystyle \mathbb {K} } andT{\displaystyle {\mathcal {T}}} is a vector topology onX{\displaystyle X} thenT{\displaystyle {\mathcal {T}}} is atopology of the pairing and that it iscompatible (orconsistent)with the pairing(X,Y,b){\displaystyle (X,Y,b)} if it islocally convex and if the continuous dual space of(X,T)=b(,Y).{\displaystyle \left(X,{\mathcal {T}}\right)=b(\,\cdot \,,Y).}[note 8] IfX{\displaystyle X} distinguishes points ofY{\displaystyle Y} then by identifyingY{\displaystyle Y} as a vector subspace ofX{\displaystyle X}'s algebraic dual, the defining condition becomes:(X,T)=Y.{\displaystyle \left(X,{\mathcal {T}}\right)^{\prime }=Y.}[1] Some authors (e.g. [Trèves 2006] and [Schaefer 1999]) require that a topology of a pair also be Hausdorff,[2][8] which it would have to be ifY{\displaystyle Y} distinguishes the points ofX{\displaystyle X} (which these authors assume).

The weak topologyσ(X,Y,b){\displaystyle \sigma (X,Y,b)} is compatible with the pairing(X,Y,b){\displaystyle (X,Y,b)} (as was shown in the Weak representation theorem) and it is in fact the weakest such topology. There is a strongest topology compatible with this pairing and that is theMackey topology. IfN{\displaystyle N} is a normed space that is notreflexive then the usual norm topology on its continuous dual space isnot compatible with the duality(N,N).{\displaystyle \left(N^{\prime },N\right).}[1]

Mackey–Arens theorem

[edit]
Main articles:Mackey–Arens theorem,Mackey topology, andMackey space

The following is one of the most important theorems in duality theory.

Mackey–Arens theorem I[1]Let(X,Y,b){\displaystyle (X,Y,b)} will be a pairing such thatX{\displaystyle X} distinguishes the points ofY{\displaystyle Y} and letT{\displaystyle {\mathcal {T}}} be a locally convex topology onX{\displaystyle X} (not necessarily Hausdorff). ThenT{\displaystyle {\mathcal {T}}} is compatible with the pairing(X,Y,b){\displaystyle (X,Y,b)} if and only ifT{\displaystyle {\mathcal {T}}} is a polar topology determined by some collectionG{\displaystyle {\mathcal {G}}} ofσ(Y,X,b){\displaystyle \sigma (Y,X,b)}-compactdisks that cover[note 9]Y.{\displaystyle Y.}

It follows that the Mackey topologyτ(X,Y,b),{\displaystyle \tau (X,Y,b),} which recall is the polar topology generated by allσ(X,Y,b){\displaystyle \sigma (X,Y,b)}-compact disks inY,{\displaystyle Y,} is the strongest locally convex topology onX{\displaystyle X} that is compatible with the pairing(X,Y,b).{\displaystyle (X,Y,b).} A locally convex space whose given topology is identical to the Mackey topology is called aMackey space. The following consequence of the above Mackey-Arens theorem is also called the Mackey-Arens theorem.

Mackey–Arens theorem II[1]Let(X,Y,b){\displaystyle (X,Y,b)} will be a pairing such thatX{\displaystyle X} distinguishes the points ofY{\displaystyle Y} and letT{\displaystyle {\mathcal {T}}} be a locally convex topology onX.{\displaystyle X.} ThenT{\displaystyle {\mathcal {T}}} is compatible with the pairing if and only ifσ(X,Y,b)Tτ(X,Y,b).{\displaystyle \sigma (X,Y,b)\subseteq {\mathcal {T}}\subseteq \tau (X,Y,b).}

Mackey's theorem, barrels, and closed convex sets

[edit]

IfX{\displaystyle X} is a TVS (overR{\displaystyle \mathbb {R} } orC{\displaystyle \mathbb {C} }) then ahalf-space is a set of the form{xX:f(x)r}{\displaystyle \{x\in X:f(x)\leq r\}} for some realr{\displaystyle r} and some continuousreal linear functionalf{\displaystyle f} onX.{\displaystyle X.}

TheoremIfX{\displaystyle X} is alocally convex space (overR{\displaystyle \mathbb {R} } orC{\displaystyle \mathbb {C} }) and ifC{\displaystyle C} is a non-empty closed and convex subset ofX,{\displaystyle X,} thenC{\displaystyle C} is equal to the intersection of all closed half spaces containing it.[9]

The above theorem implies that the closed and convex subsets of a locally convex space dependentirely on the continuous dual space. Consequently, the closed and convex subsets are the same in any topology compatible with duality;that is, ifT{\displaystyle {\mathcal {T}}} andL{\displaystyle {\mathcal {L}}} are any locally convex topologies onX{\displaystyle X} with the same continuous dual spaces, then a convex subset ofX{\displaystyle X} is closed in theT{\displaystyle {\mathcal {T}}} topology if and only if it is closed in theL{\displaystyle {\mathcal {L}}} topology. This implies that theT{\displaystyle {\mathcal {T}}}-closure of any convex subset ofX{\displaystyle X} is equal to itsL{\displaystyle {\mathcal {L}}}-closure and that for anyT{\displaystyle {\mathcal {T}}}-closeddiskA{\displaystyle A} inX,{\displaystyle X,}A=A.{\displaystyle A=A^{\circ \circ }.}[1] In particular, ifB{\displaystyle B} is a subset ofX{\displaystyle X} thenB{\displaystyle B} is abarrel in(X,L){\displaystyle (X,{\mathcal {L}})} if and only if it is a barrel in(X,L).{\displaystyle (X,{\mathcal {L}}).}[1]

The following theorem shows thatbarrels (i.e. closedabsorbingdisks) are exactly the polars of weakly bounded subsets.

Theorem[1]Let(X,Y,b){\displaystyle (X,Y,b)} will be a pairing such thatX{\displaystyle X} distinguishes the points ofY{\displaystyle Y} and letT{\displaystyle {\mathcal {T}}} be a topology of the pair. Then a subset ofX{\displaystyle X} is a barrel inX{\displaystyle X} if and only if it is equal to the polar of someσ(Y,X,b){\displaystyle \sigma (Y,X,b)}-bounded subset ofY.{\displaystyle Y.}

IfX{\displaystyle X} is a topological vector space, then:[1][10]

  1. A closedabsorbing andbalanced subsetB{\displaystyle B} ofX{\displaystyle X} absorbs each convex compact subset ofX{\displaystyle X} (i.e. there exists a realr>0{\displaystyle r>0} such thatrB{\displaystyle rB} contains that set).
  2. IfX{\displaystyle X} is Hausdorff and locally convex then every barrel inX{\displaystyle X} absorbs every convex bounded complete subset ofX.{\displaystyle X.}

All of this leads to Mackey's theorem, which is one of the central theorems in the theory of dual systems. In short, it states the bounded subsets are the same for any two Hausdorff locally convex topologies that are compatible with the same duality.

Mackey's theorem[10][1]Suppose that(X,L){\displaystyle (X,{\mathcal {L}})} is a Hausdorff locally convex space with continuous dual spaceX{\displaystyle X^{\prime }} and consider the canonical dualityX,X.{\displaystyle \left\langle X,X^{\prime }\right\rangle .} IfL{\displaystyle {\mathcal {L}}} is any topology onX{\displaystyle X} that is compatible with the dualityX,X{\displaystyle \left\langle X,X^{\prime }\right\rangle } onX{\displaystyle X} then the bounded subsets of(X,L){\displaystyle (X,{\mathcal {L}})} are the same as the bounded subsets of(X,L).{\displaystyle (X,{\mathcal {L}}).}

Space of finite sequences

[edit]

LetX{\displaystyle X} denote the space of all sequences of scalarsr=(ri)i=1{\displaystyle r_{\bullet }=\left(r_{i}\right)_{i=1}^{\infty }} such thatri=0{\displaystyle r_{i}=0} for all sufficiently largei.{\displaystyle i.} LetY=X{\displaystyle Y=X} and define a bilinear mapb:X×XK{\displaystyle b:X\times X\to \mathbb {K} } byb(r,s):=i=1risi.{\displaystyle b\left(r_{\bullet },s_{\bullet }\right):=\sum _{i=1}^{\infty }r_{i}s_{i}.} Thenσ(X,X,b)=τ(X,X,b).{\displaystyle \sigma (X,X,b)=\tau (X,X,b).}[1] Moreover, a subsetTX{\displaystyle T\subseteq X} isσ(X,X,b){\displaystyle \sigma (X,X,b)}-bounded (resp.β(X,X,b){\displaystyle \beta (X,X,b)}-bounded) if and only if there exists a sequencem=(mi)i=1{\displaystyle m_{\bullet }=\left(m_{i}\right)_{i=1}^{\infty }} of positive real numbers such that|ti|mi{\displaystyle \left|t_{i}\right|\leq m_{i}} for allt=(ti)i=1T{\displaystyle t_{\bullet }=\left(t_{i}\right)_{i=1}^{\infty }\in T} and all indicesi{\displaystyle i} (resp. andmX{\displaystyle m_{\bullet }\in X}).[1]

It follows that there are weakly bounded (that is,σ(X,X,b){\displaystyle \sigma (X,X,b)}-bounded) subsets ofX{\displaystyle X} that are not strongly bounded (that is, notβ(X,X,b){\displaystyle \beta (X,X,b)}-bounded).

See also

[edit]

Notes

[edit]
  1. ^A subsetS{\displaystyle S} ofX{\displaystyle X} is total if for allyY{\displaystyle y\in Y},b(s,y)=0 for all sS{\displaystyle b(s,y)=0\quad {\text{ for all }}s\in S} impliesy=0{\displaystyle y=0}.
  2. ^Thatb{\displaystyle b} is linear in its first coordinate is obvious. Supposec{\displaystyle c} is a scalar. Thenb(x,cy)=b(x,c¯y)=x,c¯y=cx,y=cb(x,y),{\displaystyle b(x,c\perp y)=b\left(x,{\overline {c}}y\right)=\langle x,{\overline {c}}y\rangle =c\langle x,y\rangle =cb(x,y),} which shows thatb{\displaystyle b} is linear in its second coordinate.
  3. ^The weak topology onY{\displaystyle Y} is the weakest TVS topology onY{\displaystyle Y} making all mapsb(x,):YK{\displaystyle b(x,\,\cdot \,):Y\to \mathbb {K} } continuous, asx{\displaystyle x} ranges overR.{\displaystyle R.} The dual notation of(Y,σ(Y,R,b)),{\displaystyle (Y,\sigma (Y,R,b)),}(Y,σ(Y,R)),{\displaystyle (Y,\sigma (Y,R)),} or simply(Y,σ){\displaystyle (Y,\sigma )} may also be used to denoteY{\displaystyle Y} endowed with the weak topologyσ(Y,R,b).{\displaystyle \sigma (Y,R,b).} IfR{\displaystyle R} is not clear from context then it should be assumed to be all ofX,{\displaystyle X,} in which case it is simply called theweak topology onY{\displaystyle Y} (induced byX{\displaystyle X}).
  4. ^IfG:ZY{\displaystyle G:Z\to Y} is a linear map thenG{\displaystyle G}'s transpose,tG:XW,{\displaystyle {}^{t}G:X\to W,} is well-defined if and only ifZ{\displaystyle Z} distinguishes points ofW{\displaystyle W} andb(X,G())c(W,).{\displaystyle b(X,G(\,\cdot \,))\subseteq c(W,\,\cdot \,).} In this case, for eachxX,{\displaystyle x\in X,} the defining condition fortG(x){\displaystyle {}^{t}G(x)} is:c(x,G())=c(tG(x),).{\displaystyle c(x,G(\,\cdot \,))=c\left({}^{t}G(x),\,\cdot \,\right).}
  5. ^IfH:XZ{\displaystyle H:X\to Z} is a linear map thenH{\displaystyle H}'s transpose,tH:WY,{\displaystyle {}^{t}H:W\to Y,} is well-defined if and only ifX{\displaystyle X} distinguishes points ofY{\displaystyle Y} andc(W,H())b(,Y).{\displaystyle c(W,H(\,\cdot \,))\subseteq b(\,\cdot \,,Y).} In this case, for eachwW,{\displaystyle w\in W,} the defining condition fortH(w){\displaystyle {}^{t}H(w)} is:c(w,H())=b(,tH(w)).{\displaystyle c(w,H(\,\cdot \,))=b\left(\,\cdot \,,{}^{t}H(w)\right).}
  6. ^IfH:WY{\displaystyle H:W\to Y} is a linear map thenH{\displaystyle H}'s transpose,tH:XQ,{\displaystyle {}^{t}H:X\to Q,} is well-defined if and only ifW{\displaystyle W} distinguishes points ofZ{\displaystyle Z} andb(X,H())c(,Z).{\displaystyle b(X,H(\,\cdot \,))\subseteq c(\,\cdot \,,Z).} In this case, for eachxX,{\displaystyle x\in X,} the defining condition fortH(x){\displaystyle {}^{t}H(x)} is:c(x,H())=b(,tH(x)).{\displaystyle c(x,H(\,\cdot \,))=b\left(\,\cdot \,,{}^{t}H(x)\right).}
  7. ^IfH:YW{\displaystyle H:Y\to W} is a linear map thenH{\displaystyle H}'s transpose,tH:ZX,{\displaystyle {}^{t}H:Z\to X,} is well-defined if and only ifY{\displaystyle Y} distinguishes points ofX{\displaystyle X} andc(H(),Z)b(X,).{\displaystyle c(H(\,\cdot \,),Z)\subseteq b(X,\,\cdot \,).} In this case, for eachzZ,{\displaystyle z\in Z,} the defining condition fortH(z){\displaystyle {}^{t}H(z)} is:c(H(),z)=b(tH(z),){\displaystyle c(H(\,\cdot \,),z)=b\left({}^{t}H(z),\,\cdot \,\right)}
  8. ^Of course, there is an analogous definition for topologies onY{\displaystyle Y} to be "compatible it a pairing" but this article will only deal with topologies onX.{\displaystyle X.}
  9. ^Recall that a collection of subsets of a setS{\displaystyle S} is said tocoverS{\displaystyle S} if every point ofS{\displaystyle S} is contained in some set belonging to the collection.

References

[edit]
  1. ^abcdefghijklmnopqrstuvwxyzaaabacadaeafagahaiajakalamanaoapaqarasatauavawaxayNarici & Beckenstein 2011, pp. 225–273.
  2. ^abcdefSchaefer & Wolff 1999, pp. 122–128.
  3. ^Trèves 2006, p. 195.
  4. ^abSchaefer & Wolff 1999, pp. 123–128.
  5. ^abcNarici & Beckenstein 2011, pp. 260–264.
  6. ^Narici & Beckenstein 2011, pp. 251–253.
  7. ^abSchaefer & Wolff 1999, pp. 128–130.
  8. ^Trèves 2006, pp. 368–377.
  9. ^Narici & Beckenstein 2011, p. 200.
  10. ^abTrèves 2006, pp. 371–372.

Bibliography

[edit]

External links

[edit]
Spaces
Properties
Theorems
Operators
Algebras
Open problems
Applications
Advanced topics
Basic concepts
Topics (list)
Maps
Mainresults (list)
Sets
Series
Duality
Applications and related
Duality and spaces oflinear maps
Basic concepts
Topologies
Main results
Maps
Subsets
Other concepts
Basic concepts
Main results
Maps
Types of sets
Set operations
Types of TVSs
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dual_system&oldid=1330469107"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp