Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Discrete valuation

From Wikipedia, the free encyclopedia

Inmathematics, adiscrete valuation is anintegervaluation on afieldK; that is, afunction:[1]

ν:KZ{}{\displaystyle \nu :K\to \mathbb {Z} \cup \{\infty \}}

satisfying the conditions:

ν(xy)=ν(x)+ν(y){\displaystyle \nu (x\cdot y)=\nu (x)+\nu (y)}
ν(x+y)min{ν(x),ν(y)}{\displaystyle \nu (x+y)\geq \min {\big \{}\nu (x),\nu (y){\big \}}}
ν(x)=x=0{\displaystyle \nu (x)=\infty \iff x=0}

for allx,yK{\displaystyle x,y\in K}.

Note that often the trivial valuation which takes on only the values0,{\displaystyle 0,\infty } is explicitly excluded.

A field with a non-trivial discrete valuation is called adiscrete valuation field.

Discrete valuation rings and valuations on fields

[edit]

To every fieldK{\displaystyle K} with discrete valuationν{\displaystyle \nu } we can associate the subring

OK:={xKν(x)0}{\displaystyle {\mathcal {O}}_{K}:=\left\{x\in K\mid \nu (x)\geq 0\right\}}

ofK{\displaystyle K}, which is adiscrete valuation ring. Conversely, the valuationν:AZ{}{\displaystyle \nu :A\rightarrow \mathbb {Z} \cup \{\infty \}} on a discrete valuation ringA{\displaystyle A} can be extended in a unique way to a discrete valuation on thequotient fieldK=Quot(A){\displaystyle K={\text{Quot}}(A)}; the associated discrete valuation ringOK{\displaystyle {\mathcal {O}}_{K}} is justA{\displaystyle A}.

Examples

[edit]

More examples can be found in the article ondiscrete valuation rings.

Citations

[edit]
  1. ^Cassels & Fröhlich 1967, p. 2.

References

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Discrete_valuation&oldid=1176160436"
Categories:

[8]ページ先頭

©2009-2025 Movatter.jp