Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Discrete Fourier transform over a ring

From Wikipedia, the free encyclopedia
(Redirected fromDiscrete Fourier transform (general))
Generalisation of Fourier transform to any ring
Fourier transforms

Inmathematics, thediscrete Fourier transform over a ring generalizes thediscrete Fourier transform (DFT), of a function whose values are commonlycomplex numbers, over an arbitraryring.

Definition

[edit]

LetR be anyring, letn1{\displaystyle n\geq 1} be an integer, and letαR{\displaystyle \alpha \in R} be aprincipalnth root of unity, defined by:[1]

αn=1j=0n1αjk=0 for 1k<n{\displaystyle {\begin{aligned}&\alpha ^{n}=1\\&\sum _{j=0}^{n-1}\alpha ^{jk}=0{\text{ for }}1\leq k<n\end{aligned}}}1

The discrete Fourier transform maps ann-tuple(v0,,vn1){\displaystyle (v_{0},\ldots ,v_{n-1})} of elements ofR to anothern-tuple(f0,,fn1){\displaystyle (f_{0},\ldots ,f_{n-1})} of elements ofR according to the following formula:

fk=j=0n1vjαjk.{\displaystyle f_{k}=\sum _{j=0}^{n-1}v_{j}\alpha ^{jk}.}2

By convention, the tuple(v0,,vn1){\displaystyle (v_{0},\ldots ,v_{n-1})} is said to be in thetime domain and the indexj is calledtime. The tuple(f0,,fn1){\displaystyle (f_{0},\ldots ,f_{n-1})} is said to be in thefrequency domain and the indexk is calledfrequency. The tuple(f0,,fn1){\displaystyle (f_{0},\ldots ,f_{n-1})} is also called thespectrum of(v0,,vn1){\displaystyle (v_{0},\ldots ,v_{n-1})}. This terminology derives from the applications of Fourier transforms insignal processing.

IfR is anintegral domain (which includesfields), it is sufficient to chooseα{\displaystyle \alpha } as aprimitiventh root of unity, which replaces the condition (1) by:[1]

αk1{\displaystyle \alpha ^{k}\neq 1} for1k<n{\displaystyle 1\leq k<n}
Proof

Takeβ=αk{\displaystyle \beta =\alpha ^{k}} with1k<n{\displaystyle 1\leq k<n}. Sinceαn=1{\displaystyle \alpha ^{n}=1},βn=(αn)k=1{\displaystyle \beta ^{n}=(\alpha ^{n})^{k}=1}, giving:

βn1=(β1)(j=0n1βj)=0{\displaystyle \beta ^{n}-1=(\beta -1)\left(\sum _{j=0}^{n-1}\beta ^{j}\right)=0}

where the sum matches (1). Sinceα{\displaystyle \alpha } is a primitive root of unity,β10{\displaystyle \beta -1\neq 0}. SinceR is an integral domain, the sum must be zero. ∎

Another simple condition applies in the case wheren is a power of two: (1) may be replaced byαn/2=1{\displaystyle \alpha ^{n/2}=-1}.[1]

Inverse

[edit]

The inverse of the discrete Fourier transform is given as:

vj=1nk=0n1fkαjk.{\displaystyle v_{j}={\frac {1}{n}}\sum _{k=0}^{n-1}f_{k}\alpha ^{-jk}.}3

where1/n{\displaystyle 1/n} is the multiplicative inverse ofn inR (if this inverse does not exist, the DFT cannot be inverted).

Proof

Substituting (2) into the right-hand-side of (3), we get

1nk=0n1fkαjk=1nk=0n1j=0n1vjαjkαjk=1nj=0n1vjk=0n1α(jj)k.{\displaystyle {\begin{aligned}&{\frac {1}{n}}\sum _{k=0}^{n-1}f_{k}\alpha ^{-jk}\\={}&{\frac {1}{n}}\sum _{k=0}^{n-1}\sum _{j'=0}^{n-1}v_{j'}\alpha ^{j'k}\alpha ^{-jk}\\={}&{\frac {1}{n}}\sum _{j'=0}^{n-1}v_{j'}\sum _{k=0}^{n-1}\alpha ^{(j'-j)k}.\end{aligned}}}

This is exactly equal tovj{\displaystyle v_{j}}, becausek=0n1α(jj)k=0{\displaystyle \sum _{k=0}^{n-1}\alpha ^{(j'-j)k}=0} whenjj{\displaystyle j'\neq j} (by (1) withk=jj{\displaystyle k=j'-j}), andk=0n1α(jj)k=n{\displaystyle \sum _{k=0}^{n-1}\alpha ^{(j'-j)k}=n} whenj=j{\displaystyle j'=j}. ∎

Matrix formulation

[edit]

Since the discrete Fourier transform is alinear operator, it can be described bymatrix multiplication. In matrix notation, the discrete Fourier transform is expressed as follows:

[f0f1fn1]=[11111αα2αn11α2α4α2(n1)1αn1α2(n1)α(n1)(n1)][v0v1vn1].{\displaystyle {\begin{bmatrix}f_{0}\\f_{1}\\\vdots \\f_{n-1}\end{bmatrix}}={\begin{bmatrix}1&1&1&\cdots &1\\1&\alpha &\alpha ^{2}&\cdots &\alpha ^{n-1}\\1&\alpha ^{2}&\alpha ^{4}&\cdots &\alpha ^{2(n-1)}\\\vdots &\vdots &\vdots &\ddots &\vdots \\1&\alpha ^{n-1}&\alpha ^{2(n-1)}&\cdots &\alpha ^{(n-1)(n-1)}\\\end{bmatrix}}{\begin{bmatrix}v_{0}\\v_{1}\\\vdots \\v_{n-1}\end{bmatrix}}.}

The matrix for this transformation is called theDFT matrix.

Similarly, the matrix notation for the inverse Fourier transform is

[v0v1vn1]=1n[11111α1α2α(n1)1α2α4α2(n1)1α(n1)α2(n1)α(n1)(n1)][f0f1fn1].{\displaystyle {\begin{bmatrix}v_{0}\\v_{1}\\\vdots \\v_{n-1}\end{bmatrix}}={\frac {1}{n}}{\begin{bmatrix}1&1&1&\cdots &1\\1&\alpha ^{-1}&\alpha ^{-2}&\cdots &\alpha ^{-(n-1)}\\1&\alpha ^{-2}&\alpha ^{-4}&\cdots &\alpha ^{-2(n-1)}\\\vdots &\vdots &\vdots &\ddots &\vdots \\1&\alpha ^{-(n-1)}&\alpha ^{-2(n-1)}&\cdots &\alpha ^{-(n-1)(n-1)}\end{bmatrix}}{\begin{bmatrix}f_{0}\\f_{1}\\\vdots \\f_{n-1}\end{bmatrix}}.}

Polynomial formulation

[edit]

Sometimes it is convenient to identify ann-tuple(v0,,vn1){\displaystyle (v_{0},\ldots ,v_{n-1})} with a formal polynomial

pv(x)=v0+v1x+v2x2++vn1xn1.{\displaystyle p_{v}(x)=v_{0}+v_{1}x+v_{2}x^{2}+\cdots +v_{n-1}x^{n-1}.\,}

By writing out the summation in the definition of the discrete Fourier transform (2), we obtain:

fk=v0+v1αk+v2α2k++vn1α(n1)k.{\displaystyle f_{k}=v_{0}+v_{1}\alpha ^{k}+v_{2}\alpha ^{2k}+\cdots +v_{n-1}\alpha ^{(n-1)k}.\,}

This means thatfk{\displaystyle f_{k}} is just the value of the polynomialpv(x){\displaystyle p_{v}(x)} forx=αk{\displaystyle x=\alpha ^{k}}, i.e.,

fk=pv(αk).{\displaystyle f_{k}=p_{v}(\alpha ^{k}).\,}4

The Fourier transform can therefore be seen to relate thecoefficients and thevalues of a polynomial: the coefficients are in the time-domain, and the values are in the frequency domain. Here, of course, it is important that the polynomial is evaluated at thenth roots of unity, which are exactly the powers ofα{\displaystyle \alpha }.

Similarly, the definition of the inverse Fourier transform (3) can be written:

vj=1n(f0+f1αj+f2α2j++fn1α(n1)j).{\displaystyle v_{j}={\frac {1}{n}}(f_{0}+f_{1}\alpha ^{-j}+f_{2}\alpha ^{-2j}+\cdots +f_{n-1}\alpha ^{-(n-1)j}).}5

With

pf(x)=f0+f1x+f2x2++fn1xn1,{\displaystyle p_{f}(x)=f_{0}+f_{1}x+f_{2}x^{2}+\cdots +f_{n-1}x^{n-1},}

this means that

vj=1npf(αj).{\displaystyle v_{j}={\frac {1}{n}}p_{f}(\alpha ^{-j}).}

We can summarize this as follows: if thevalues ofpv(x){\displaystyle p_{v}(x)} are thecoefficients ofpf(x){\displaystyle p_{f}(x)}, then thevalues ofpf(x){\displaystyle p_{f}(x)} are thecoefficients ofpv(x){\displaystyle p_{v}(x)}, up to a scalar factor and reordering.[2]

Special cases

[edit]

Complex numbers

[edit]

IfF=C{\displaystyle F={\mathbb {C} }} is the field of complex numbers, then then{\displaystyle n}th roots of unity can be visualized as points on theunit circle of thecomplex plane. In this case, one usually takes

α=e2πin,{\displaystyle \alpha =e^{\frac {-2\pi i}{n}},}

which yields the usual formula for thecomplex discrete Fourier transform:

fk=j=0n1vje2πinjk.{\displaystyle f_{k}=\sum _{j=0}^{n-1}v_{j}e^{{\frac {-2\pi i}{n}}jk}.}

Over the complex numbers, it is often customary to normalize the formulas for the DFT and inverse DFT by using the scalar factor1n{\displaystyle {\frac {1}{\sqrt {n}}}} in both formulas, rather than1{\displaystyle 1} in the formula for the DFT and1n{\displaystyle {\frac {1}{n}}} in the formula for the inverse DFT. With this normalization, the DFT matrix is then unitary. Note thatn{\displaystyle {\sqrt {n}}} does not make sense in an arbitrary field.

Finite fields

[edit]

IfF=GF(q){\displaystyle F=\mathrm {GF} (q)} is afinite field, whereq is aprime power, then the existence of a primitiventh root automatically implies thatndividesq1{\displaystyle q-1}, because themultiplicative order of each element must divide the size of themultiplicative group ofF, which isq1{\displaystyle q-1}. This in particular ensures thatn=1+1++1n times{\displaystyle n=\underbrace {1+1+\cdots +1} _{n\ {\rm {times}}}} is invertible, so that the notation1n{\displaystyle {\frac {1}{n}}} in (3) makes sense.

An application of the discrete Fourier transform overGF(q){\displaystyle \mathrm {GF} (q)} is the reduction ofReed–Solomon codes toBCH codes incoding theory. Such transform can be carried out efficiently with proper fast algorithms, for example,cyclotomic fast Fourier transform.

Polynomial formulation without nth root

[edit]

SupposeF=GF(p){\displaystyle F=\mathrm {GF} (p)}. Ifpn{\displaystyle p\nmid n}, it may be the case thatnp1{\displaystyle n\nmid p-1}. This means we cannot find annth{\displaystyle n^{th}} root of unity inF{\displaystyle F}. We may view the Fourier transform as an isomorphismF[Cn]=F[x]/(xn1)iF[x]/(Pi(x)){\displaystyle \mathrm {F} [C_{n}]=\mathrm {F} [x]/(x^{n}-1)\cong \bigoplus _{i}\mathrm {F} [x]/(P_{i}(x))} for some polynomialsPi(x){\displaystyle P_{i}(x)}, in accordance withMaschke's theorem. The map is given by theChinese remainder theorem, and the inverse is given by applyingBézout's identity for polynomials.[3]

xn1=d|nΦd(x){\displaystyle x^{n}-1=\prod _{d|n}\Phi _{d}(x)}, a product of cyclotomic polynomials. FactoringΦd(x){\displaystyle \Phi _{d}(x)} inF[x]{\displaystyle F[x]} is equivalent to factoring the prime ideal(p){\displaystyle (p)} inZ[ζ]=Z[x]/(Φd(x)){\displaystyle \mathrm {Z} [\zeta ]=\mathrm {Z} [x]/(\Phi _{d}(x))}. We obtaing{\displaystyle g} polynomialsP1Pg{\displaystyle P_{1}\ldots P_{g}} of degreef{\displaystyle f} wherefg=φ(d){\displaystyle fg=\varphi (d)} andf{\displaystyle f} is the order ofp mod d{\displaystyle p{\text{ mod }}d}.

As above, we may extend the base field toGF(q){\displaystyle \mathrm {GF} (q)} in order to find a primitive root, i.e. asplitting field forxn1{\displaystyle x^{n}-1}. Nowxn1=k(xαk){\displaystyle x^{n}-1=\prod _{k}(x-\alpha ^{k})}, so an elementj=0n1vjxjF[x]/(xn1){\displaystyle \sum _{j=0}^{n-1}v_{j}x^{j}\in F[x]/(x^{n}-1)} maps toj=0n1vjxjmod(xαk)j=0n1vj(αk)j{\displaystyle \sum _{j=0}^{n-1}v_{j}x^{j}\mod (x-\alpha ^{k})\equiv \sum _{j=0}^{n-1}v_{j}(\alpha ^{k})^{j}} for eachk{\displaystyle k}.

When p divides n

[edit]

Whenp|n{\displaystyle p|n}, we may still define anFp{\displaystyle F_{p}}-linear isomorphism as above. Note that(xn1)=(xm1)ps{\displaystyle (x^{n}-1)=(x^{m}-1)^{p^{s}}} wheren=mps{\displaystyle n=mp^{s}} andpm{\displaystyle p\nmid m}. We apply the above factorization toxm1{\displaystyle x^{m}-1}, and now obtain the decompositionF[x]/(xn1)iF[x]/(Pi(x)ps){\displaystyle F[x]/(x^{n}-1)\cong \bigoplus _{i}F[x]/(P_{i}(x)^{p^{s}})}. The modules occurring are now indecomposable rather than irreducible.

Order of the DFT matrix

[edit]

Supposepn{\displaystyle p\nmid n} so we have annth{\displaystyle n^{th}} root of unityα{\displaystyle \alpha }. LetA{\displaystyle A} be the above DFT matrix, aVandermonde matrix with entriesAij=αij{\displaystyle A_{ij}=\alpha ^{ij}} for0i,j<n{\displaystyle 0\leq i,j<n}. Recall thatj=0n1α(kl)j=nδk,l{\displaystyle \sum _{j=0}^{n-1}\alpha ^{(k-l)j}=n\delta _{k,l}} since ifk=l{\displaystyle k=l}, then every entry is 1. Ifkl{\displaystyle k\neq l}, then we have ageometric series with common ratioαkl{\displaystyle \alpha ^{k-l}}, so we obtain1αn(kl)1αkl{\displaystyle {\frac {1-\alpha ^{n(k-l)}}{1-\alpha ^{k-l}}}}. Sinceαn=1{\displaystyle \alpha ^{n}=1} the numerator is zero, butkl0{\displaystyle k-l\neq 0} so the denominator is nonzero.

First computing the square,(A2)ik=j=0n1αj(i+k)=nδi,k{\displaystyle (A^{2})_{ik}=\sum _{j=0}^{n-1}\alpha ^{j(i+k)}=n\delta _{i,-k}}. ComputingA4=(A2)2{\displaystyle A^{4}=(A^{2})^{2}} similarly and simplifying the deltas, we obtain(A4)ik=n2δi,k{\displaystyle (A^{4})_{ik}=n^{2}\delta _{i,k}}. Thus,A4=n2In{\displaystyle A^{4}=n^{2}I_{n}} and the order is4ord(n2){\displaystyle 4\cdot {\text{ord}}(n^{2})}.

Normalizing the DFT matrix

[edit]

In order to align with the complex case and ensure the matrix is order 4 exactly, we can normalize the above DFT matrixA{\displaystyle A} with1n{\displaystyle {\frac {1}{\sqrt {n}}}}. Note that thoughn{\displaystyle {\sqrt {n}}} may not exist in the splitting fieldFq{\displaystyle F_{q}} ofxn1{\displaystyle x^{n}-1}, we may form a quadratic extensionFq2Fq[x]/(x2n){\displaystyle F_{q^{2}}\cong F_{q}[x]/(x^{2}-n)} in which the square root exists. We may then setU=1nA{\displaystyle U={\frac {1}{\sqrt {n}}}A}, andU4=In{\displaystyle U^{4}=I_{n}}.

Unitarity

[edit]

Supposepn{\displaystyle p\nmid n}. One can ask whether the DFT matrix isunitary over a finite field. If the matrix entries are overFq{\displaystyle F_{q}}, then one must ensureq{\displaystyle q} is a perfect square or extend toFq2{\displaystyle F_{q^{2}}} in order to define the order two automorphismxxq{\displaystyle x\mapsto x^{q}}. Consider the above DFT matrixAij=αij{\displaystyle A_{ij}=\alpha ^{ij}}. Note thatA{\displaystyle A} is symmetric. Conjugating and transposing, we obtainAij=αqji{\displaystyle A_{ij}^{*}=\alpha ^{qji}}.

(AA)ik=j=0n1αj(i+qk)=nδi,qk{\displaystyle (AA^{*})_{ik}=\sum _{j=0}^{n-1}\alpha ^{j(i+qk)}=n\delta _{i,-qk}}

by a similar geometric series argument as above. We may remove then{\displaystyle n} by normalizing so thatU=1nA{\displaystyle U={\frac {1}{\sqrt {n}}}A} and(UU)ik=δi,qk{\displaystyle (UU^{*})_{ik}=\delta _{i,-qk}}. ThusU{\displaystyle U} is unitary iffq1(modn){\displaystyle q\equiv -1\,({\text{mod}}\,n)}. Recall that since we have annth{\displaystyle n^{th}} root of unity,n|q21{\displaystyle n|q^{2}-1}. This means thatq21(q+1)(q1)0(modn){\displaystyle q^{2}-1\equiv (q+1)(q-1)\equiv 0\,({\text{mod}}\,n)}. Note ifq{\displaystyle q} was not a perfect square to begin with, thenn|q1{\displaystyle n|q-1} and soq1(modn){\displaystyle q\equiv 1\,({\text{mod}}\,n)}.

For example, whenp=3,n=5{\displaystyle p=3,n=5} we need to extend toq2=34{\displaystyle q^{2}=3^{4}} to get a 5th root of unity.q=91(mod5){\displaystyle q=9\equiv -1\,({\text{mod}}\,5)}.

For a nonexample, whenp=3,n=8{\displaystyle p=3,n=8} we extend toF32{\displaystyle F_{3^{2}}} to get an 8th root of unity.q2=9{\displaystyle q^{2}=9}, soq3(mod8){\displaystyle q\equiv 3\,({\text{mod}}\,8)}, and in this caseq+10{\displaystyle q+1\not \equiv 0} andq10{\displaystyle q-1\not \equiv 0}.UU{\displaystyle UU^{*}} is a square root of the identity, soU{\displaystyle U} is not unitary.

Eigenvalues of the DFT matrix

[edit]

Whenpn{\displaystyle p\nmid n}, we have annth{\displaystyle n^{th}} root of unityα{\displaystyle \alpha } in the splitting fieldFqFp[x]/(xn1){\displaystyle F_{q}\cong F_{p}[x]/(x^{n}-1)}. Note that thecharacteristic polynomial of the above DFT matrix may not split overFq{\displaystyle F_{q}}. The DFT matrix is order 4. We may need to go to a further extensionFq{\displaystyle F_{q'}}, the splitting extension of the characteristic polynomial of the DFT matrix, which at least contains fourth roots of unity. Ifa{\displaystyle a} is a generator of the multiplicative group ofFq{\displaystyle F_{q'}}, then the eigenvalues are{±1,±a(q1)/4}{\displaystyle \{\pm 1,\pm a^{(q'-1)/4}\}}, in exact analogy with the complex case. They occur with some nonnegative multiplicity.

Number-theoretic transform

[edit]

Thenumber-theoretic transform (NTT)[4] is obtained by specializing the discrete Fourier transform toF=Z/p{\displaystyle F={\mathbb {Z} }/p}, theintegers modulo a primep. This is afinite field, and primitiventh roots of unity exist whenevern dividesp1{\displaystyle p-1}, so we havep=ξn+1{\displaystyle p=\xi n+1} for a positive integerξ. Specifically, letω{\displaystyle \omega } be a primitive(p1){\displaystyle (p-1)}th root of unity, then annth root of unityα{\displaystyle \alpha } can be found by lettingα=ωξ{\displaystyle \alpha =\omega ^{\xi }}.

e.g. forp=5{\displaystyle p=5},α=2{\displaystyle \alpha =2}

21=2(mod5)22=4(mod5)23=3(mod5)24=1(mod5){\displaystyle {\begin{aligned}2^{1}&=2{\pmod {5}}\\2^{2}&=4{\pmod {5}}\\2^{3}&=3{\pmod {5}}\\2^{4}&=1{\pmod {5}}\end{aligned}}}

whenN=4{\displaystyle N=4}

[F(0)F(1)F(2)F(3)]=[1111124314141342][f(0)f(1)f(2)f(3)]{\displaystyle {\begin{bmatrix}F(0)\\F(1)\\F(2)\\F(3)\end{bmatrix}}={\begin{bmatrix}1&1&1&1\\1&2&4&3\\1&4&1&4\\1&3&4&2\end{bmatrix}}{\begin{bmatrix}f(0)\\f(1)\\f(2)\\f(3)\end{bmatrix}}}

The number theoretic transform may be meaningful in theringZ/m{\displaystyle \mathbb {Z} /m}, even when the modulusm is not prime, provided a principal root of ordern exists. Special cases of the number theoretic transform such as theFermat Number Transform (m = 2k+1), used by theSchönhage–Strassen algorithm, or Mersenne Number Transform[5] (m = 2k − 1) use a composite modulus.

In general, ifm=ipiei{\textstyle m=\prod _{i}p_{i}^{e_{i}}}, then one may find annth{\textstyle n^{th}} root of unity modm by finding primitiventh{\textstyle n^{th}} roots of unitygi{\displaystyle g_{i}} modpiei{\textstyle p_{i}^{e_{i}}}, yielding a tupleg=(gi)ii(Z/pieiZ){\textstyle g=\left(g_{i}\right)_{i}\in \prod _{i}\left(\mathbb {Z} /p_{i}^{e_{i}}\mathbb {Z} \right)^{\ast }}. The preimage ofg{\displaystyle g} under theChinese remainder theorem isomorphism is annth{\textstyle n^{th}} root of unityα{\textstyle \alpha } such thatαn/2=1modm{\textstyle \alpha ^{n/2}=-1\mod m}. This ensures that the above summation conditions are satisfied. We must have thatn|φ(piei){\textstyle n|\varphi (p_{i}^{e_{i}})} for eachi{\displaystyle i}, whereφ{\displaystyle \varphi } is theEuler's totient function function.[6]

Fast Fourier transform can be adapted to NTT and implemented with only integer operations.[7] Some choices ofm such as theSolinas prime264232+1{\displaystyle 2^{64}-2^{32}+1} are even easier to calculate on computers as they require no division operation for reduction.[8]

Discrete weighted transform

[edit]

Thediscrete weighted transform (DWT) is a variation on the discrete Fourier transform over arbitrary rings involvingweighting the input before transforming it by multiplying elementwise by a weight vector, then weighting the result by another vector.[9] TheIrrational base discrete weighted transform is a special case of this.

Properties

[edit]

Most of the important attributes of thecomplex DFT, including the inverse transform, theconvolution theorem, and mostfast Fourier transform (FFT) algorithms, depend only on the property that the kernel of the transform is a principal root of unity. These properties also hold, with identical proofs, over arbitrary rings. In the case of fields, this analogy can be formalized by thefield with one element, considering any field with a primitiventh root of unity as an algebra over the extension fieldF1n.{\displaystyle \mathbf {F} _{1^{n}}.}[clarification needed]

In particular, the applicability ofO(nlogn){\displaystyle O(n\log n)}fast Fourier transform algorithms to compute the NTT, combined with the convolution theorem, mean that thenumber-theoretic transform gives an efficient way to compute exactconvolutions of integer sequences. While the complex DFT can perform the same task, it is susceptible toround-off error in finite-precisionfloating point arithmetic; the NTT has no round-off because it deals purely with fixed-size integers that can be exactly represented.

Fast algorithms

[edit]

For the implementation of a "fast" algorithm (similar to howFFT computes theDFT), it is often desirable that the transform length is also highly composite, e.g., apower of two. However, there are specialized fast Fourier transform algorithms for finite fields, such as Wang and Zhu's algorithm,[10] that are efficient regardless of the transform length factors.

See also

[edit]

References

[edit]
  1. ^abcMartin Fürer, "Faster Integer Multiplication", STOC 2007 Proceedings, pp. 57–66. Section 2: The Discrete Fourier Transform.
  2. ^R. Lidl and G. Pilz. Applied Abstract Algebra, 2nd edition. Wiley, 1999, pp. 217–219.
  3. ^"Jacksonwalters/DFT-finite-groups".GitHub.
  4. ^Agarwal, R.; Burrus, C. (April 1974). "Fast Convolution using fermat number transforms with applications to digital filtering".IEEE Transactions on Acoustics, Speech, and Signal Processing.22 (2):87–97.doi:10.1109/TASSP.1974.1162555.ISSN 0096-3518.
  5. ^Rader, C.M. (December 1972). "Discrete Convolutions via Mersenne Transforms".IEEE Transactions on Computers.C-21 (12):1269–1273.doi:10.1109/T-C.1972.223497.ISSN 0018-9340.S2CID 1939809.
  6. ^Walters, Jackson; Silverman, Thomas."ntt".crates.io. Retrieved2025-02-14.
  7. ^Satriawan, Ardianto; Syafalni, Infall; Mareta, Rella; Anshori, Isa; Shalannanda, Wervyan; Barra, Aleams (2023)."Conceptual Review on Number Theoretic Transform and Comprehensive Review on Its Implementations".IEEE Access.11:70288–70316.doi:10.1109/ACCESS.2023.3294446.
  8. ^Craig-Wood, Nick."Integer DWTs mod 2^64-2^32+1".www.craig-wood.com.
  9. ^Crandall, Richard; Fagin, Barry (1994),"Discrete weighted transforms and large-integer arithmetic"(PDF),Mathematics of Computation,62 (205):305–324,doi:10.2307/2153411,JSTOR 2153411
  10. ^Yao Wang and Xuelong Zhu, "A fast algorithm for the Fourier transform over finite fields and its VLSI implementation", IEEE Journal on Selected Areas in Communications 6(3)572–577, 1988

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Discrete_Fourier_transform_over_a_ring&oldid=1332905223"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp