Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Discrete-time proportional hazards

From Wikipedia, the free encyclopedia
This articleis anorphan, as no other articleslink to it. Pleaseintroduce links to this page fromrelated articles.(January 2018)

Insurvival analysis, hazard rate models are widely used to model duration data in a wide rangeof disciplines, from bio-statistics to economics.[1]

Grouped duration data are widespread in many applications. Unemployment durations are typically measured over weeks or months and these time intervals may be considered too large for continuous approximations to hold. In this case, we will typically have grouping pointsta{\displaystyle t_{a}}, wherea=1,...,A.{\displaystyle a=1,...,A.}. Models allow fortime-invariant andtime-variantcovariates, but the latter require stronger assumptions in terms ofexogeneity.[2] The discrete-time hazard function can be written as:

λd(ta|χ)=Pr(ta1T<ta|Tta1,x[ta1])=S(ta1|χ)S(ta|χ)S(ta1|χ){\displaystyle \lambda _{d}(t_{a}|\chi )=Pr(t_{a-1}\leqslant T<t_{a}|T\geqslant t_{a-1},x[t_{a-1}])={\frac {S(t_{a-1}|\chi )-S(t_{a}|\chi )}{S(t_{a-1}|\chi )}}}

whereS(ta|χ){\displaystyle S(t_{a}|\chi )} is thesurvivor function. It can be shown that this can be rewritten as:

λd(ta|χ)=1exp(λ(s)ds)=1exp(exp(lnλ0s+x(ts1)β)){\displaystyle \lambda _{d}(t_{a}|\chi )=1-exp{\biggl (}-\int \lambda (s)ds{\biggr )}=1-exp{\Bigl (}-exp(ln\lambda _{0s}+x(t_{s-1})'\beta ){\biggl )}}

These probabilities provide the building blocks for setting up theLikelihood function, which ends up being:[3]

L(β,λ)=[exp(exp(lnλ0s+xi(ts1)β))]×(1exp(exp(lnλ0ai+xi(ta1)β))){\displaystyle L(\beta ,\lambda )=\textstyle \prod [\prod exp(-exp(ln\lambda _{0s}+x_{i}(t_{s}-1)'\beta ){\bigr )}]\times {\bigl (}1-exp{\bigl (}-exp(ln\lambda 0_{ai}+x_{i}(t_{a-1})'\beta ){\bigr )}{\Bigr )}}

This maximum likelihood maximization depends on the specification of the baseline hazard functions. These specifications include fullyparametric models, piece-wise-constant proportional hazard models, or partial likelihood approaches that estimate the baseline hazard as a nuisance function.[4] Alternatively, one can be more flexible for the baseline hazardλ0d(t){\displaystyle \lambda _{0}^{d}(t)} and impose more structure forλid(t)=λ0d(t)exp(xiβ).{\displaystyle \lambda _{i}^{d}(t)=\lambda _{0}^{d}(t)exp(-x_{i}'\beta ).} This approach performs well for certain measures and can approximate arbitrary hazard functions relatively well, while not imposing stringent computational requirements.[5] When the covariates are omitted from the analysis, the maximum likelihood boils down to theKaplan-Meier estimator of the survivor function.[6]

Another way to model discrete duration data is to model transitions usingbinary choice models.[7]

References

[edit]
  1. ^Jenkins, Stephen P.Estimation of discrete time (grouped duration data) proportional hazards models: pgmhaz(PDF) (Report). ESRC Research Centre on Micro-Social Change, University of Essex.
  2. ^Wooldridge, J. (2002): Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass.
  3. ^Cameron A. C. and P. K. Trivedi (2005): Microeconometrics: Methods and Applications. Cambridge University Press, New York.
  4. ^Wooldridge, J. (2002): Econometric Analysis of Cross Section and Panel Data, MIT Press, Cambridge, Mass.
  5. ^Han, A. K., and J. A. Hausman (1990): Flexible Parametric Estimation of Duration and Competing Risk Models. Journal of Applied Econometrics, 5, pp. 1-28
  6. ^Lancaster, T. (1990): The Econometric Analysis of Transition Data. Cambridge University Press, Cambridge.
  7. ^Cameron A. C. and P. K. Trivedi (2005): Microeconometrics: Methods and Applications. Cambridge University Press, New York.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Discrete-time_proportional_hazards&oldid=1236620503"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp