Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dinitrogen pentoxide

From Wikipedia, the free encyclopedia
Dinitrogen pentoxide
Full structural formula with dimensions
Full structural formula with dimensions
Ball-and-stick model
Ball-and-stick model
Names
IUPAC name
Dinitrogen pentoxide
Other names
Nitric anhydride
Nitronium nitrate
Nitryl nitrate
DNPO
Anhydrous nitric acid
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.030.227Edit this at Wikidata
EC Number
  • 233-264-2
UNII
  • InChI=1S/N2O5/c3-1(4)7-2(5)6 checkY
    Key: ZWWCURLKEXEFQT-UHFFFAOYSA-N checkY
  • InChI=1/N2O5/c3-1(4)7-2(5)6
    Key: ZWWCURLKEXEFQT-UHFFFAOYAN
  • gas phase: [O-][N+](=O)O[N+]([O-])=O
  • solid phase: [O]=[N+]=[O].[N+](=O)([O-])[O-]
Properties
N2O5
Molar mass108.01 g/mol
Appearancewhite solid
Density2.0 g/cm3[1]
Boiling point33 °C (91 °F; 306 K) sublimes[1]
reacts to giveHNO3
Solubilitysoluble inchloroform
negligible inCCl4
−35.6×10−6 cm3 mol−1 (aq)
1.39 D
Structure[2]
Hexagonal,hP14
P63/mmc No. 194
a = 0.54019 nm,c = 0.65268 nm
2
planar,C2v (approx.D2h)
N–O–N ≈ 180°
Thermochemistry[3]
143.1 J K−1 mol−1 (s)
95.3 J K−1 mol−1 (g)
178.2 J K−1 mol−1 (s)
355.7 J K−1 mol−1 (g)
−43.1 kJ/mol (s)
+13.3 kJ/mol (g)
113.9 kJ/mol (s)
+117.1 kJ/mol (g)
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
strong oxidizer, forms strong acid in contact with water
NFPA 704 (fire diamond)
Flash pointNon-flammable
Related compounds
Nitrous oxide
Nitric oxide
Dinitrogen trioxide
Nitrogen dioxide
Dinitrogen tetroxide
Related compounds
Nitric acid
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Dinitrogen pentoxide (also known asnitrogen pentoxide ornitric anhydride) is thechemical compound with theformulaN2O5. It is one of the binarynitrogen oxides, a family of compounds that contain onlynitrogen andoxygen. It exists as colourless crystals that sublime slightly above room temperature, yielding a colorless gas.[4]

Dinitrogen pentoxide is an unstable and potentially dangerous oxidizer that once was used as areagent when dissolved inchloroform fornitrations but has largely been superseded bynitronium tetrafluoroborate (NO2BF4).

N2O5 is a rare example of a compound that adopts two structures depending on the conditions. The solid is a salt,nitronium nitrate, consisting of separatenitronium cations[NO2]+ andnitrate anions[NO3]; but in the gas phase and under some other conditions it is acovalently-bound molecule.[5]

History

[edit]

N2O5 was first reported by the French chemistHenri Deville in 1840, who prepared it by treatingsilver nitrate (AgNO3) withchlorine.[6][7]

Structure and physical properties

[edit]

Pure solidN2O5 is asalt, consisting of separated linearnitronium ionsNO+2 and planar trigonalnitrate anionsNO3. Bothnitrogen centers haveoxidation state +5. It crystallizes in the space groupD4
6h
(C6/mmc) withZ = 2, with theNO3 anions in theD3h sites and theNO+2 cations inD3d sites.[8]

The vapor pressureP (in atm) as a function of temperatureT (inkelvin), in the range 211 to 305 K (−62 to 32 °C), is well approximated by the formula

lnP=23.23487098.2T{\displaystyle \ln P=23.2348-{\frac {7098.2}{T}}}

being about 48 torr at 0 °C, 424 torr at 25 °C, and 760 torr at 32 °C (9 °C below the melting point).[9]

In the gas phase, or when dissolved in nonpolarsolvents such ascarbon tetrachloride, the compound exists ascovalently-bonded moleculesO2N−O−NO2. In the gas phase, theoretical calculations for the minimum-energy configuration indicate that theO−N−O angle in each−NO2 wing is about 134° and theN−O−N angle is about 112°. In that configuration, the two−NO2 groups are rotated about 35° around the bonds to the central oxygen, away from theN−O−N plane. The molecule thus has a propeller shape, with one axis of 180° rotational symmetry (C2)[10]

When gaseousN2O5 is cooled rapidly ("quenched"), one can obtain themetastable molecular form, which exothermically converts to the ionic form above −70 °C.[11]

GaseousN2O5 absorbsultraviolet light with dissociation into thefree radicalsnitrogen dioxideNO2 andnitrogen trioxideNO3 (uncharged nitrate). The absorption spectrum has a broad band with maximum at wavelength 160 nm.[12]

Preparation

[edit]

A recommended laboratory synthesis entails dehydratingnitric acid (HNO3) withphosphorus(V) oxide:[11]

P4O10 + 12 HNO3 → 4 H3PO4 + 6 N2O5

Another laboratory process is the reaction oflithium nitrateLiNO3 andbromine pentafluorideBrF5, in the ratio exceeding 3:1. The reaction first formsnitryl fluorideFNO2 that reacts further with the lithium nitrate:[8]

BrF5 + 3 LiNO3 → 3 LiF + BrONO2 + O2 + 2 FNO2
FNO2 + LiNO3 → LiF + N2O5

The compound can also be created in the gas phase by reactingnitrogen dioxideNO2 orN2O4 withozone:[13]

2 NO2 + O3 → N2O5 + O2

However, the productcatalyzes the rapid decomposition of ozone:[13]

2 O3 + N2O5 → 3 O2 + N2O5

Dinitrogen pentoxide is also formed when a mixture of oxygen and nitrogen is passed through an electricdischarge.[8] Another route is the reactions ofPhosphoryl chloridePOCl3 ornitryl chlorideNO2Cl withsilver nitrateAgNO3[8][14]

Reactions

[edit]

Dinitrogen pentoxide reacts with water (hydrolyses) to producenitric acidHNO3. Thus, dinitrogen pentoxide is theanhydride of nitric acid:[11]

N2O5 + H2O → 2 HNO3

Solutions of dinitrogen pentoxide in nitric acid can be seen as nitric acid with more than 100% concentration. The phase diagram of the systemH2ON2O5 shows the well-known negativeazeotrope at 60%N2O5 (that is, 70%HNO3), a positive azeotrope at 85.7%N2O5 (100%HNO3), and another negative one at 87.5%N2O5 ("102%HNO3").[15]

The reaction withhydrogen chlorideHCl also gives nitric acid andnitryl chlorideNO2Cl:[16]

N2O5 + HCl → HNO3 + NO2Cl

Dinitrogen pentoxide eventually decomposes at room temperature intoNO2 andO2.[17][13] Decomposition is negligible if the solid is kept at 0 °C, in suitably inert containers.[8]

Dinitrogen pentoxide reacts withammoniaNH3 to give several products, includingnitrous oxideN2O,ammonium nitrateNH4NO3,nitramideNH2NO2 andammonium dinitramideNH4N(NO2)2, depending on reaction conditions.[18]

Decomposition of dinitrogen pentoxide at high temperatures

[edit]

Dinitrogen pentoxide between high temperatures of 600 and 1,100 K (327–827 °C), is decomposed in two successive stoichiometric steps:

N2O5 → NO2 + NO3
2 NO3 → 2 NO2 + O2

In the shock wave,N2O5 has decomposed stoichiometrically intonitrogen dioxide andoxygen. At temperatures of 600 K and higher, nitrogen dioxide is unstable with respect tonitrogen oxideNO and oxygen. The thermal decomposition of 0.1 mM nitrogen dioxide at 1000 K is known to require about two seconds.[19]

Decomposition of dinitrogen pentoxide in carbon tetrachloride at 30 °C

[edit]

Apart from the decomposition ofN2O5 at high temperatures, it can also be decomposed incarbon tetrachlorideCCl4 at 30 °C (303 K).[20] BothN2O5 andNO2 are soluble inCCl4 and remain in solution while oxygen is insoluble and escapes. The volume of the oxygen formed in the reaction can be measured in a gas burette. After this step we can proceed with the decomposition, measuring the quantity ofO2 that is produced over time because the only form to obtainO2 is with theN2O5 decomposition. The equation below refers to the decomposition ofN2O5 inCCl4:

2 N2O5 → 4 NO2 + O2(g)

And this reaction follows the first orderrate law that says:

d[A]dt=k[A]{\displaystyle -{\frac {d[\mathrm {A} ]}{dt}}=k[\mathrm {A} ]}

Decomposition of nitrogen pentoxide in the presence of nitric oxide

[edit]

N2O5 can also be decomposed in the presence ofnitric oxideNO:

N2O5 + NO → 3 NO2

The rate of the initial reaction between dinitrogen pentoxide and nitric oxide of the elementary unimolecular decomposition.[21]

Applications

[edit]

Nitration of organic compounds

[edit]

Dinitrogen pentoxide, for example as a solution inchloroform, has been used as a reagent to introduce the−NO2 functionality inorganic compounds. Thisnitration reaction is represented as follows:

N2O5 + Ar−H → HNO3 + Ar−NO2

where Ar represents anarene moiety.[22] The reactivity of theNO+2 can be further enhanced with strong acids that generate the "super-electrophile"HNO2+2.

In this use,N2O5 has been largely replaced bynitronium tetrafluoroborate[NO2]+[BF4]. This salt retains the high reactivity ofNO+2, but it is thermally stable, decomposing at about 180 °C (intoNO2F andBF3).

Dinitrogen pentoxide is relevant to the preparation of explosives.[7][23]

Atmospheric occurrence

[edit]

In theatmosphere, dinitrogen pentoxide is an important reservoir of theNOx species that are responsible forozone depletion: its formation provides anull cycle with whichNO andNO2 are temporarily held in an unreactive state.[24]Mixing ratios of several parts per billion by volume have been observed in polluted regions of the nighttime troposphere.[25] Dinitrogen pentoxide has also been observed in the stratosphere[26] at similar levels, the reservoir formation having been postulated in considering the puzzling observations of a sudden drop in stratosphericNO2 levels above 50 °N, the so-called 'Noxon cliff'.

Variations inN2O5 reactivity inaerosols can result in significant losses in troposphericozone,hydroxyl radicals, andNOx concentrations.[27] Two important reactions ofN2O5 in atmospheric aerosols are hydrolysis to formnitric acid[28] and reaction withhalide ions, particularlyCl, to formClNO2 molecules which may serve as precursors to reactive chlorine atoms in the atmosphere.[29][30]

Hazards

[edit]

N2O5 is a strong oxidizer that forms explosive mixtures with organic compounds andammonium salts. The decomposition of dinitrogen pentoxide produces the highly toxicnitrogen dioxide gas.

References

[edit]
  1. ^abHaynes, p. 4.76
  2. ^Simon, Arndt; Horakh, Jörg; Obermeyer, Axel; Borrmann, Horst (1992). "Kristalline Stickstoffoxide — Struktur von N2O3 mit einer Anmerkung zur Struktur von N2O5".Angewandte Chemie (in German).104 (3). Wiley:325–327.Bibcode:1992AngCh.104..325S.doi:10.1002/ange.19921040321.
  3. ^Haynes, p. 5.29
  4. ^Connell, Peter Steele. (1979)The Photochemistry of Dinitrogen Pentoxide. Ph. D. thesis, Lawrence Berkeley National Laboratory.
  5. ^Angus, W.R.; Jones, R.W.; Phillips, G.O. (1949). "Existence of Nitrosyl Ions (NO+) in Dinitrogen Tetroxide and of Nitronium Ions (NO2+) in Liquid Dinitrogen Pentoxide".Nature.164 (4167): 433.Bibcode:1949Natur.164..433A.doi:10.1038/164433a0.PMID 18140439.S2CID 4136455.
  6. ^Deville, M.H. (1849)."Note sur la production de l'acide nitrique anhydre".Compt. Rend.28:257–260.
  7. ^abAgrawal, Jai Prakash (2010).High Energy Materials: Propellants, Explosives and Pyrotechnics. Wiley-VCH. p. 117.ISBN 978-3-527-32610-5. Retrieved20 September 2011.
  8. ^abcdeWilson, William W.; Christe, Karl O. (1987). "Dinitrogen pentoxide. New synthesis and laser Raman spectrum".Inorganic Chemistry.26 (10):1631–1633.doi:10.1021/ic00257a033.
  9. ^McDaniel, A. H.; Davidson, J. A.; Cantrell, C. A.; Shetter, R. E.; Calvert, J. G. (1988). "Enthalpies of formation of dinitrogen pentoxide and the nitrate free radical".The Journal of Physical Chemistry.92 (14):4172–4175.doi:10.1021/j100325a035.
  10. ^Parthiban, S.; Raghunandan, B.N.; Sumathi, R. (1996). "Structures, energies and vibrational frequencies of dinitrogen pentoxide".Journal of Molecular Structure: Theochem.367:111–118.doi:10.1016/S0166-1280(96)04516-2.
  11. ^abcHolleman, Arnold Frederik; Wiberg, Egon (2001), Wiberg, Nils (ed.),Inorganic Chemistry, translated by Eagleson, Mary; Brewer, William, San Diego/Berlin: Academic Press/De Gruyter,ISBN 0-12-352651-5
  12. ^Osborne, Bruce A.; Marston, George; Kaminski, L.; Jones, N.C; Gingell, J.M; Mason, Nigel; Walker, Isobel C.; Delwiche, J.; Hubin-Franskin, M.-J. (2000). "Vacuum ultraviolet spectrum of dinitrogen pentoxide".Journal of Quantitative Spectroscopy and Radiative Transfer.64 (1):67–74.Bibcode:2000JQSRT..64...67O.doi:10.1016/S0022-4073(99)00104-1.
  13. ^abcYao, Francis; Wilson, Ivan; Johnston, Harold (1982). "Temperature-dependent ultraviolet absorption spectrum for dinitrogen pentoxide".The Journal of Physical Chemistry.86 (18):3611–3615.doi:10.1021/j100215a023.
  14. ^Schott, Garry; Davidson, Norman (1958). "Shock Waves in Chemical Kinetics: The Decomposition of N2O5 at High Temperatures".Journal of the American Chemical Society.80 (8):1841–1853.Bibcode:1958JAChS..80.1841S.doi:10.1021/ja01541a019.
  15. ^Lloyd, L.; Wyatt, P. A. H. (1955). "The vapour pressures of nitric acid solutions. Part I. New azeotropes in the water–dinitrogen pentoxide system".J. Chem. Soc.:2248–2252.doi:10.1039/JR9550002248.
  16. ^Wilkins, Robert A.; Hisatsune, I. C. (1976). "The Reaction of Dinitrogen Pentoxide with Hydrogen Chloride".Industrial & Engineering Chemistry Fundamentals.15 (4):246–248.doi:10.1021/i160060a003.
  17. ^Gruenhut, N. S.; Goldfrank, M.; Cushing, M. L.; Caesar, G. V.; Caesar, P. D.; Shoemaker, C. (1950). "Nitrogen(V) Oxide (Nitrogen Pentoxide, Dinitrogen Pentoxide, Nitric Anhydride)".Inorganic Syntheses. pp. 78–81.doi:10.1002/9780470132340.ch20.ISBN 9780470132340.{{cite book}}:ISBN / Date incompatibility (help)
  18. ^Frenck, C.; Weisweiler, W. (2002). "Modeling the Reactions Between Ammonia and Dinitrogen Pentoxide to Synthesize Ammonium Dinitramide (ADN)".Chemical Engineering & Technology.25 (2): 123.doi:10.1002/1521-4125(200202)25:2<123::AID-CEAT123>3.0.CO;2-W.
  19. ^Schott, Garry; Davidson, Norman (1958). "Shock Waves in Chemical Kinetics: The Decomposition of N2O5 at High Temperatures".Journal of the American Chemical Society.80 (8):1841–1853.Bibcode:1958JAChS..80.1841S.doi:10.1021/ja01541a019.
  20. ^Jaime, R. (2008).Determinación de orden de reacción haciendo uso de integrales definidas. Universidad Nacional Autónoma de Nicaragua, Managua.
  21. ^Wilson, David J.; Johnston, Harold S. (1953). "Decomposition of Nitrogen Pentoxide in the Presence of Nitric Oxide. IV. Effect of Noble Gases".Journal of the American Chemical Society.75 (22): 5763.Bibcode:1953JAChS..75.5763W.doi:10.1021/ja01118a529.
  22. ^Bakke, Jan M.; Hegbom, Ingrid; Verne, Hans Peter; Weidlein, Johann; Schnöckel, Hansgeorg; Paulsen, Gudrun B.; Nielsen, Ruby I.; Olsen, Carl E.; Pedersen, Christian; Stidsen, Carsten E. (1994)."Dinitrogen Pentoxide--Sulfur Dioxide, a New Nitration System".Acta Chemica Scandinavica.48:181–182.doi:10.3891/acta.chem.scand.48-0181.
  23. ^Talawar, M. B. (2005). "Establishment of Process Technology for the Manufacture of Dinitrogen Pentoxide and its Utility for the Synthesis of Most Powerful Explosive of Today—CL-20".Journal of Hazardous Materials.124 (1–3):153–64.Bibcode:2005JHzM..124..153T.doi:10.1016/j.jhazmat.2005.04.021.PMID 15979786.
  24. ^Finlayson-Pitts, Barbara J.; Pitts, James N. (2000).Chemistry of the upper and lower atmosphere : theory, experiments, and applications. San Diego: Academic Press.ISBN 9780080529073.OCLC 162128929.
  25. ^Wang, Haichao; Lu, Keding; Chen, Xiaorui; Zhu, Qindan; Chen, Qi; Guo, Song; Jiang, Meiqing; Li, Xin; Shang, Dongjie; Tan, Zhaofeng; Wu, Yusheng; Wu, Zhijun; Zou, Qi; Zheng, Yan; Zeng, Limin; Zhu, Tong; Hu, Min; Zhang, Yuanhang (2017). "High N2O5 Concentrations Observed in Urban Beijing: Implications of a Large Nitrate Formation Pathway".Environmental Science and Technology Letters.4 (10):416–420.Bibcode:2017EnSTL...4..416W.doi:10.1021/acs.estlett.7b00341.
  26. ^Rinsland, C.P. (1989). "Stratospheric N2O5 profiles at sunrise and sunset from further analysis of theATMOS/Spacelab 3 solar spectra".Journal of Geophysical Research.94:18341–18349.Bibcode:1989JGR....9418341R.doi:10.1029/JD094iD15p18341.
  27. ^Macintyre, H. L.; Evans, M. J. (2010-08-09)."Sensitivity of a global model to the uptake of N2O5 by tropospheric aerosol".Atmospheric Chemistry and Physics.10 (15):7409–7414.Bibcode:2010ACP....10.7409M.doi:10.5194/acp-10-7409-2010.
  28. ^Brown, S. S.; Dibb, J. E.; Stark, H.; Aldener, M.; Vozella, M.; Whitlow, S.; Williams, E. J.; Lerner, B. M.; Jakoubek, R. (2004-04-16)."Nighttime removal of NOx in the summer marine boundary layer".Geophysical Research Letters.31 (7): n/a.Bibcode:2004GeoRL..31.7108B.doi:10.1029/2004GL019412.
  29. ^Gerber, R. Benny; Finlayson-Pitts, Barbara J.; Hammerich, Audrey Dell (2015-07-15)."Mechanism for formation of atmospheric Cl atom precursors in the reaction of dinitrogen oxides with HCl/Cl on aqueous films"(PDF).Physical Chemistry Chemical Physics.17 (29):19360–19370.Bibcode:2015PCCP...1719360H.doi:10.1039/C5CP02664D.PMID 26140681.S2CID 39157816.
  30. ^Kelleher, Patrick J.; Menges, Fabian S.; DePalma, Joseph W.; Denton, Joanna K.; Johnson, Mark A.; Weddle, Gary H.; Hirshberg, Barak; Gerber, R. Benny (2017-09-18). "Trapping and Structural Characterization of the XNO2·NO3 (X = Cl, Br, I) Exit Channel Complexes in the Water-Mediated X + N2O5 Reactions with Cryogenic Vibrational Spectroscopy".The Journal of Physical Chemistry Letters.8 (19):4710–4715.doi:10.1021/acs.jpclett.7b02120.PMID 28898581.

Cited sources

[edit]
Mixed oxidation states
+1 oxidation state
+2 oxidation state
+3 oxidation state
+4 oxidation state
+5 oxidation state
+6 oxidation state
+7 oxidation state
+8 oxidation state
Related
Oxides are sorted byoxidation state.Category:Oxides
Nitrogen species
Hydrides
Organic
Oxides
Halides
Oxidation states
−3,−2,−1, 0,+1,+2,+3,+4,+5 (a stronglyacidic oxide)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dinitrogen_pentoxide&oldid=1290168385"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp