Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dinatural transformation

From Wikipedia, the free encyclopedia
Generalization of natural transformations

Incategory theory, a branch ofmathematics, adinatural transformationα{\displaystyle \alpha } between twofunctors

S,T:Cop×CD,{\displaystyle S,T:C^{\mathrm {op} }\times C\to D,}

written

α:S¨T,{\displaystyle \alpha :S{\ddot {\to }}T,}

is a function that to every objectc{\displaystyle c} ofC{\displaystyle C} associates an arrow

αc:S(c,c)T(c,c){\displaystyle \alpha _{c}:S(c,c)\to T(c,c)} ofD{\displaystyle D}

and satisfies the followingcoherence property: for every morphismf:cc{\displaystyle f:c\to c'} ofC{\displaystyle C} the diagram

commutes.[1]

The composition of two dinatural transformations need not be dinatural.

See also

[edit]

Notes

[edit]
  1. ^Mac Lane, Saunders (2013).Categories for the working mathematician. Springer Science & Business Media. p. 218.

References

[edit]

External links

[edit]


Stub icon

Thiscategory theory-related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Dinatural_transformation&oldid=1266638865"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp