Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dimension of a scheme

From Wikipedia, the free encyclopedia

In algebraic geometry, thedimension of a scheme is a generalization of adimension of an algebraic variety.Scheme theory emphasizes therelative point of view and, accordingly, therelative dimension of amorphism of schemes is also important.

Definition

[edit]

By definition, the dimension of a schemeX is the dimension of the underlyingtopological space: the supremum of the lengths of chains ofirreducible closed subsets:

V0V1VX.{\displaystyle \emptyset \neq V_{0}\subsetneq V_{1}\subsetneq \cdots \subsetneq V_{\ell }\subset X.}[1]

In particular, ifX=SpecA{\displaystyle X=\operatorname {Spec} A} is anaffine scheme, then such chains correspond to chains ofprime ideals (inclusion reversed) and so the dimension ofX is precisely theKrull dimension ofA.

IfY is an irreducible closed subset of a schemeX, then the codimension ofY inX is the supremum of the lengths of chains of irreducible closed subsets:

Y=V0V1VX.{\displaystyle Y=V_{0}\subsetneq V_{1}\subsetneq \cdots \subsetneq V_{\ell }\subset X.}[2]

An irreducible subset ofX is anirreducible component ofX if and only if the codimension of it inX is zero. IfX=SpecA{\displaystyle X=\operatorname {Spec} A} is affine, then the codimension ofY inX is precisely the height of the prime ideal definingY inX.

Examples

[edit]
codim(p1,X)=1,codim(p2,X)=2,{\displaystyle \operatorname {codim} ({\mathfrak {p}}_{1},X)=1,\,\operatorname {codim} ({\mathfrak {p}}_{2},X)=2,}
whileX is irreducible.

Equidimensional scheme

[edit]

Anequidimensional scheme (or,pure dimensional scheme) is ascheme all of whoseirreducible components are of the samedimension (implicitly assuming the dimensions are all well-defined).

Examples

[edit]

All irreducible schemes are equidimensional.[5]

Inaffine space, the union of a line and a point not on the line isnot equidimensional. In general, if two closed subschemes of some scheme, neither containing the other, have unequal dimensions, then their union is not equidimensional.

If a scheme issmooth (for instance,étale) over Spec k for some field k, then everyconnected component (which is then in fact an irreducible component), is equidimensional.

Relative dimension

[edit]

Letf:XY{\displaystyle f:X\rightarrow Y} be amorphism locally offinite type between twoschemesX{\displaystyle X} andY{\displaystyle Y}. The relative dimension off{\displaystyle f} at a pointyY{\displaystyle y\in Y} is thedimension of thefiberf1(y){\displaystyle f^{-1}(y)}. If all the nonempty fibers[clarification needed] are purely of the same dimensionn{\displaystyle n}, then one says thatf{\displaystyle f} is of relative dimensionn{\displaystyle n}.[6]

See also

[edit]

Notes

[edit]
  1. ^The Spec of thesymmetric algebra of thedual vector space ofV is the scheme structure onV{\displaystyle V}.
  2. ^In fact, by definition,π1(η){\displaystyle \pi ^{-1}(\eta )} is the fiber product ofπ:XSpec(R){\displaystyle \pi :X\to \operatorname {Spec} (R)} andη=Spec(k(η))SpecR{\displaystyle \eta =\operatorname {Spec} (k(\eta ))\to \operatorname {Spec} R} and so it is the Spec ofR[t]Rk(η)=k(η)[t]{\displaystyle R[t]\otimes _{R}k(\eta )=k(\eta )[t]}.
  1. ^Hartshorne 1977, Ch. I, just after Corollary 1.6.
  2. ^Hartshorne 1977, Ch. II, just after Example 3.2.6.
  3. ^Hartshorne 1977, Ch. II, Exercise 3.20. (b)
  4. ^Hartshorne 1977, Ch. II, Exercise 3.20. (e)
  5. ^Dundas, Bjorn Ian; Jahren, Björn; Levine, Marc; Østvær, P.A.; Röndigs, Oliver; Voevodsky, Vladimir (2007),Motivic Homotopy Theory: Lectures at a Summer School in Nordfjordeid, Norway, August 2002, Springer, p. 101,ISBN 9783540458975.
  6. ^Adeel, Ahmed Kahn (March 2013)."Relative Dimension in Ncatlab".Ncatlab. Retrieved8 June 2022.

References

[edit]

External links

[edit]
Stub icon

Thisalgebraic geometry–related article is astub. You can help Wikipedia byexpanding it.

Retrieved from "https://en.wikipedia.org/w/index.php?title=Dimension_of_a_scheme&oldid=1278984577"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp