Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Diffusion process

From Wikipedia, the free encyclopedia
Solution to a stochastic differential equation
For the marketing term, seeDiffusion of innovations.
icon
This articlerelies largely or entirely on asingle source. Relevant discussion may be found on thetalk page. Please helpimprove this article byintroducing citations to additional sources.
Find sources: "Diffusion process" – news ·newspapers ·books ·scholar ·JSTOR
(March 2024)

Inprobability theory andstatistics,diffusion processes are a class of continuous-timeMarkov process withalmost surelycontinuous sample paths. Diffusion processes arestochastic in nature and hence are used to model many real-life stochastic systems.Brownian motion,reflected Brownian motion andOrnstein–Uhlenbeck processes are examples of diffusion processes. It is used heavily instatistical physics,statistical analysis,information theory,data science,neural networks,finance andmarketing.

A sample path of a diffusion process models the trajectory of a particle embedded in a flowing fluid and subjected to random displacements due to collisions with other particles, which is calledBrownian motion. The position of the particle is then random; itsprobability density function as afunction of space and time is governed by aconvection–diffusion equation.

Mathematical definition

[edit]

Adiffusion process is aMarkov process withcontinuous sample paths for which theKolmogorov forward equation is theFokker–Planck equation.[1]

A diffusion process is defined by the following properties. Letaij(x,t){\displaystyle a^{ij}(x,t)} be uniformly continuous coefficients andbi(x,t){\displaystyle b^{i}(x,t)} be bounded, Borel measurable drift terms. There is a unique family of probability measuresPa;bξ,τ{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }} (forτ0{\displaystyle \tau \geq 0},ξRd{\displaystyle \xi \in \mathbb {R} ^{d}}) on the canonical spaceΩ=C([0,),Rd){\displaystyle \Omega =C([0,\infty ),\mathbb {R} ^{d})}, with its Borelσ{\displaystyle \sigma }-algebra, such that:

1. (Initial Condition) The process starts atξ{\displaystyle \xi } at timeτ{\displaystyle \tau }:Pa;bξ,τ[ψΩ:ψ(t)=ξ for 0tτ]=1.{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }[\psi \in \Omega :\psi (t)=\xi {\text{ for }}0\leq t\leq \tau ]=1.}

2. (Local Martingale Property) For everyfC2,1(Rd×[τ,)){\displaystyle f\in C^{2,1}(\mathbb {R} ^{d}\times [\tau ,\infty ))}, the process

Mt[f]=f(ψ(t),t)f(ψ(τ),τ)τt(La;b+s)f(ψ(s),s)ds{\displaystyle M_{t}^{[f]}=f(\psi (t),t)-f(\psi (\tau ),\tau )-\int _{\tau }^{t}{\bigl (}L_{a;b}+{\tfrac {\partial }{\partial s}}{\bigr )}f(\psi (s),s)\,ds} is a local martingale underPa;bξ,τ{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }} fortτ{\displaystyle t\geq \tau }, withMt[f]=0{\displaystyle M_{t}^{[f]}=0} fortτ{\displaystyle t\leq \tau }.

This familyPa;bξ,τ{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }} is called theLa;b{\displaystyle {\mathcal {L}}_{a;b}}-diffusion.

SDE Construction and Infinitesimal Generator

[edit]

It is clear that if we have anLa;b{\displaystyle {\mathcal {L}}_{a;b}}-diffusion, i.e.(Xt)t0{\displaystyle (X_{t})_{t\geq 0}} on(Ω,F,Ft,Pa;bξ,τ){\displaystyle (\Omega ,{\mathcal {F}},{\mathcal {F}}_{t},\mathbb {P} _{a;b}^{\xi ,\tau })}, thenXt{\displaystyle X_{t}} satisfies the SDEdXti=12k=1dσki(Xt)dBtk+bi(Xt)dt{\displaystyle dX_{t}^{i}={\frac {1}{2}}\,\sum _{k=1}^{d}\sigma _{k}^{i}(X_{t})\,dB_{t}^{k}+b^{i}(X_{t})\,dt}. In contrast, one can construct this diffusion from that SDE ifaij(x,t)=kσik(x,t)σjk(x,t){\displaystyle a^{ij}(x,t)=\sum _{k}\sigma _{i}^{k}(x,t)\,\sigma _{j}^{k}(x,t)} andσij(x,t){\displaystyle \sigma ^{ij}(x,t)},bi(x,t){\displaystyle b^{i}(x,t)} are Lipschitz continuous. To see this, letXt{\displaystyle X_{t}} solve the SDE starting atXτ=ξ{\displaystyle X_{\tau }=\xi }. ForfC2,1(Rd×[τ,)){\displaystyle f\in C^{2,1}(\mathbb {R} ^{d}\times [\tau ,\infty ))}, apply Itô's formula:df(Xt,t)=(ft+i=1dbifxi+vi,j=1daij2fxixj)dt+i,k=1dfxiσkidBtk.{\displaystyle df(X_{t},t)={\bigl (}{\frac {\partial f}{\partial t}}+\sum _{i=1}^{d}b^{i}{\frac {\partial f}{\partial x_{i}}}+v\sum _{i,j=1}^{d}a^{ij}\,{\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}{\bigr )}\,dt+\sum _{i,k=1}^{d}{\frac {\partial f}{\partial x_{i}}}\,\sigma _{k}^{i}\,dB_{t}^{k}.} Rearranging givesf(Xt,t)f(Xτ,τ)τt(fs+La;bf)ds=τti,k=1dfxiσkidBsk,{\displaystyle f(X_{t},t)-f(X_{\tau },\tau )-\int _{\tau }^{t}{\bigl (}{\frac {\partial f}{\partial s}}+L_{a;b}f{\bigr )}\,ds=\int _{\tau }^{t}\sum _{i,k=1}^{d}{\frac {\partial f}{\partial x_{i}}}\,\sigma _{k}^{i}\,dB_{s}^{k},} whose right‐hand side is a local martingale, matching the local‐martingale property in the diffusion definition. The law ofXt{\displaystyle X_{t}} definesPa;bξ,τ{\displaystyle \mathbb {P} _{a;b}^{\xi ,\tau }} onΩ=C([0,),Rd){\displaystyle \Omega =C([0,\infty ),\mathbb {R} ^{d})} with the correct initial condition and local martingale property. Uniqueness follows from the Lipschitz continuity ofσ,b{\displaystyle \sigma \!,\!b}. In fact,La;b+s{\displaystyle L_{a;b}+{\tfrac {\partial }{\partial s}}} coincides with the infinitesimal generatorA{\displaystyle {\mathcal {A}}} of this process. IfXt{\displaystyle X_{t}} solves the SDE, then forf(x,t)C2(Rd×R+){\displaystyle f(\mathbf {x} ,t)\in C^{2}(\mathbb {R} ^{d}\times \mathbb {R} ^{+})}, the generatorA{\displaystyle {\mathcal {A}}} isAf(x,t)=i=1dbi(x,t)fxi+vi,j=1daij(x,t)2fxixj+ft.{\displaystyle {\mathcal {A}}f(\mathbf {x} ,t)=\sum _{i=1}^{d}b_{i}(\mathbf {x} ,t)\,{\frac {\partial f}{\partial x_{i}}}+v\sum _{i,j=1}^{d}a_{ij}(\mathbf {x} ,t)\,{\frac {\partial ^{2}f}{\partial x_{i}\partial x_{j}}}+{\frac {\partial f}{\partial t}}.}

See also

[edit]

References

[edit]
  1. ^"9. Diffusion processes"(PDF). RetrievedOctober 10, 2011.
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Concepts
Applications
Implementations
Audio–visual
Text
Decisional
People
Architectures
Political
Social and economic
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diffusion_process&oldid=1318517082"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp