Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Diffusion equation

From Wikipedia, the free encyclopedia
Equation that describes density changes of a material that is diffusing in a medium

The diffusion equation is aparabolic partial differential equation. In physics, it describes the macroscopic behavior of many micro-particles inBrownian motion, resulting from the random movements and collisions of the particles (seeFick's laws of diffusion). In mathematics, it is related toMarkov processes, such asrandom walks, and applied in many other fields, such asmaterials science,information theory, andbiophysics. The diffusion equation is a special case of theconvection–diffusion equation when bulk velocity is zero. It is equivalent to theheat equation under some circumstances.

Statement

[edit]

The equation is usually written as:ϕ(r,t)t=[D(ϕ,r) ϕ(r,t)],{\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot {\big [}D(\phi ,\mathbf {r} )\ \nabla \phi (\mathbf {r} ,t){\big ]},}whereϕ(r,t) is thedensity of the diffusing material at locationr and timet andD(ϕ,r) is the collectivediffusion coefficient for densityϕ at locationr; and represents the vectordifferential operatordel. If the diffusion coefficient depends on the density then the equation is nonlinear, otherwise it is linear.

The equation above applies when the diffusion coefficient isisotropic; in the case of anisotropic diffusion,D is a symmetricpositive definite matrix, and the equation is written (for three dimensional diffusion) as:ϕ(r,t)t=i=13j=13xi[Dij(ϕ,r)ϕ(r,t)xj]{\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=\sum _{i=1}^{3}\sum _{j=1}^{3}{\frac {\partial }{\partial x_{i}}}\left[D_{ij}(\phi ,\mathbf {r} ){\frac {\partial \phi (\mathbf {r} ,t)}{\partial x_{j}}}\right]}The diffusion equation has numerous analytic solutions.[1]

IfD is constant, then the equation reduces to the following linearparabolic partial differential equation:

ϕ(r,t)t=D2ϕ(r,t),{\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=D\nabla ^{2}\phi (\mathbf {r} ,t),}

which is identical to theheat equation.

Historical origin

[edit]

Theparticle diffusion equation was originally derived byAdolf Fick in 1855.[2]

Derivation

[edit]

The diffusion equation can be trivially derived from thecontinuity equation, which states that a change in density in any part of the system is due to inflow and outflow of material into and out of that part of the system. Effectively, no material is created or destroyed:ϕt+j=0,{\displaystyle {\frac {\partial \phi }{\partial t}}+\nabla \cdot \mathbf {j} =0,}wherej is the flux of the diffusing material. The diffusion equation can be obtained easily from this when combined with the phenomenologicalFick's first law, which states that the flux of the diffusing material in any part of the system is proportional to the local density gradient:j=D(ϕ,r)ϕ(r,t).{\displaystyle \mathbf {j} =-D(\phi ,\mathbf {r} )\,\nabla \phi (\mathbf {r} ,t).}

If drift must be taken into account, theFokker–Planck equation provides an appropriate generalization.

Discretization

[edit]
See also:Discrete Gaussian kernel

The diffusion equation is continuous in both space and time. One may discretize space, time, or both space and time, which arise in application. Discretizing time alone just corresponds to taking time slices of the continuous system, and no new phenomena arise.In discretizing space alone, theGreen's function becomes thediscrete Gaussian kernel, rather than the continuousGaussian kernel. In discretizing both time and space, one obtains therandom walk.

Discretization in image processing

[edit]

Theproduct rule is used to rewrite the anisotropic tensor diffusion equation, in standard discretization schemes, because direct discretization of the diffusion equation with only first order spatial central differences leads to checkerboard artifacts. The rewritten diffusion equation used in image filtering:ϕ(r,t)t=[D(ϕ,r)]ϕ(r,t)+tr[D(ϕ,r)(Tϕ(r,t))]{\displaystyle {\frac {\partial \phi (\mathbf {r} ,t)}{\partial t}}=\nabla \cdot \left[D(\phi ,\mathbf {r} )\right]\nabla \phi (\mathbf {r} ,t)+{\rm {tr}}{\Big [}D(\phi ,\mathbf {r} ){\big (}\nabla \nabla ^{\text{T}}\phi (\mathbf {r} ,t){\big )}{\Big ]}}where "tr" denotes thetrace of the 2nd ranktensor, and superscript "T" denotestranspose, in which in image filteringD(ϕ,r) are symmetric matrices constructed from theeigenvectors of the imagestructure tensors. The spatial derivatives can then be approximated by two first order and a second order centralfinite differences. The resulting diffusion algorithm can be written as an imageconvolution with a varying kernel (stencil) of size 3 × 3 in 2D and 3 × 3 × 3 in 3D.

See also

[edit]

References

[edit]
  1. ^Barna, I.F.; Mátyás, L. (2022)."Advanced Analytic Self-Similar Solutions of Regular and Irregular Diffusion Equations".Mathematics.10 (18): 3281.arXiv:2204.04895.doi:10.3390/math10183281.
  2. ^Fick, Adolf (1855)."Ueber Diffusion".Annalen der Physik und Chemie.170 (1):59–86.Bibcode:1855AnP...170...59F.doi:10.1002/andp.18551700105.ISSN 0003-3804.

Further reading

[edit]
  • Mehrer, H.; Stolwijk, A (2009)."Heroes and Highlights in the History of Diffusion".Diffusion Fundamentals.11:1–32.doi:10.62721/diffusion-fundamentals.11.453.
  • Carslaw, H. S. and Jaeger, J. C. (1959).Conduction of Heat in Solids Oxford: Clarendon Press
  • Jacobs, M.H. (1935).Diffusion Processes Berlin/Heidelberg: Springer
  • Crank, J. (1956).The Mathematics of Diffusion Oxford: Clarendon Press
  • Mathews, Jon; Walker, Robert L. (1970).Mathematical methods of physics (2nd ed.), New York: W. A. Benjamin,ISBN 0-8053-7002-1
  • Thambynayagam, R. K. M (2011).The Diffusion Handbook: Applied Solutions for Engineers. McGraw-Hill
  • Ghez, R. (1988).A Primer Of Diffusion Problems, Wiley
  • Ghez, R. (2001).Diffusion Phenomena. Long Island, NY, USA: Dover Publication Inc
  • Pekalski, A. (1994).Diffusion Processes: Experiment, Theory, Simulations, Springer
  • Bennett, T.D. (2013).Transport by Advection and Diffusion. John Wiley & Sons
  • Vogel, G. (2019).Adventure Diffusion Springer
  • Gillespie, D.T.; Seitaridou, E (2013).Simple Brownian Diffusion,Oxford University Press
  • Nakicenovic, N.; Griübler, A.: (1991).Diffusion of Technologies and Social Behavior; Springer
  • Michaud, G.; Alecian, G.; Richer, G.: (2013).Atomic Diffusion in Stars, Springer
  • Stroock, D. W.:, Varadhan, S.R.S.: (2006).Multidimensional diffusion processes, Springer
  • Zhuoqun, W., Yin J., Li H., Zhao J., Jingxue Y., and Huilai L. (2001).Nonlinear diffusion equations, World Scientific
  • Shewmon, P. (1989).Diffusion in Solids, Wiley
  • Banks, R.B. (2010).Growth and diffusion phenomena, Springer
  • Roque-Malherbe, R.M.A. (2007).Adsorption and Diffusion in Nanoporous Materials, CRC Press
  • Cunningham, R. (1980).Diffusion in gases and porous media, Plenum
  • Pasquill, F., Smith, F.B. (1983).Atmospheric diffusion, Horwood
  • Ikeda, N., Watanabe, S. (1981).Stochastic Differential Equations and Diffusion Processes, Elsevier, Academic Press
  • Philibert, J., Laskar, A.L., Bocquet, J.L., Brebec, G., Monty, C. (1990).Diffusion in Materials, Springer Netherlands
  • Freedman, D., (1983).Brownian Motion and Diffusion, Springer-Verlag New York
  • Nagasawa, M., (1993).Schrödinger Equations and Diffusion Theory, Birkhäuser
  • Burgers, J.M., (1974). The Nonlinear Diffusion Equation: Asymptotic Solutions and Statistical Problems,Springer Netherlands
  • Ito, S., (1992).Diffusion Equations, American Mathematical Society
  • Krylov, N. V. (1994).Introduction to the Theory of Diffusion Processes, American Mathematical Society
  • Knight, F.B., (1981).Essentials of Brownian Motion and Diffusion, American Mathematical Society
  • Ibe, O.C., (2013). Elements of random walk and diffusion processes, Wiley
  • Dattagupta, S. (2013).Diffusion: Formalism and Applications, CRC Press

External links

[edit]
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diffusion_equation&oldid=1334132472"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp