Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Diazomethane

From Wikipedia, the free encyclopedia
Simplest diazo compound and methylating agent
Diazomethane
Diazomethane
Diazomethane
Diazomethane
Diazomethane
Names
IUPAC name
Diazomethane
Other names
Azimethylene,
Azomethylene,
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.005.803Edit this at Wikidata
EC Number
  • 206-382-7
KEGG
UNII
  • InChI=1S/CH2N2/c1-3-2/h1H2 checkY
    Key: YXHKONLOYHBTNS-UHFFFAOYSA-N checkY
  • InChI=1/CH2N2/c1-3-2/h1H2
    Key: YXHKONLOYHBTNS-UHFFFAOYAZ
  • N≡N: N#[N+]-[C-]
  • N=N: [N-]=[N+]=[C]
Properties
CH2N2
Molar mass42.04 g/mol
AppearanceYellow gas
Odormusty
Density1.4 (air=1)
Melting point−145 °C (−229 °F; 128 K)
Boiling point−23 °C (−9 °F; 250 K)
hydrolysis[1]
Conjugate acidMethyldiazonium
Structure
linear C=N=N
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
toxic and explosive
GHS labelling:
GHS01: ExplosiveGHS08: Health hazard
Danger
H350
P201,P202,P281,P308+P313,P405,P501
NFPA 704 (fire diamond)
Lethal dose or concentration (LD, LC):
175 ppm (cat, 10 min)[3]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 0.2 ppm (0.4 mg/m3)[2]
REL (Recommended)
TWA 0.2 ppm (0.4 mg/m3)[2]
IDLH (Immediate danger)
2 ppm[2]
Related compounds
Relatedfunctional groups;
compounds
R-N=N=N (azide),
R-N=N-R (azo);
R2CN2 R = Ph, tms, CF3
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Diazomethane is an organic chemical compound with the formula CH2N2, discovered by German chemistHans von Pechmann in 1894. It is the simplestdiazo compound. In the pure form at room temperature, it is an extremely sensitive explosive yellowgas; thus, it is almost universally used as a solution indiethyl ether. The compound is a popularmethylating agent in the laboratory, but it is too hazardous to be employed on an industrial scale without special precautions.[4] Use of diazomethane has been significantly reduced by the introduction of the safer and equivalent reagenttrimethylsilyldiazomethane.[5]

Use

[edit]

For safety and convenience diazomethane is always prepared as needed as a solution inether and used as such. It converts carboxylic acids to methyl esters andphenols into theirmethylethers. The reaction is thought to proceed via proton transfer from carboxylic acid to diazomethane to give amethyldiazonium cation, which reacts with the carboxylate ion to give the methyl ester and nitrogen gas. Labeling studies indicate that the initial proton transfer is faster than the methyl transfer step.[6] Since proton transfer is required for the reaction to proceed, this reaction is selective for the more acidic carboxylic acids (pKa ~ 5) and phenols (pKa ~ 10) over aliphatic alcohols (pKa ~ 15).[7]

In more specialized applications, diazomethane and other diazoalkyl reagents are used in theArndt–Eistert reaction and theBüchner–Curtius–Schlotterbeck reaction forhomologation of various compounds.[8][9]

Büchner–Curtius–Schlotterbeck reaction

Diazomethane reacts withalcohols orphenols in presence ofboron trifluoride (BF3) to givemethylethers.

Diazomethane is also frequently used as acarbene source. It readily takes part in1,3-dipolar cycloadditions.

Preparation

[edit]

Laboratory scale

[edit]
Diazomethane laboratory preparation

A wide variety of routes have been developed for the laboratory production of diazomethane.[10] In general, the synthesis of these all involves the addition ofmethylamine to an electron-deficient species, before treatment withnitrite and mineral acid (nitrous acid) to form anN-methyl nitrosamide. Diazomethane is prepared by hydrolysis of an ethereal solution of theseN-methyl nitrosamides with aqueous base. Examples include:

Common routes for the preparation of diazomethane: Diazald (top), MNNG (bottom)

Diazomethane reacts withalkaline solutions of D2O to give the deuterated derivative CD2N2.[20] This can be used forisotopic labeling studies.

Industrial use

[edit]

The ease with which diazomethane explodes makes it too hazardous to handle in large quantities. Despite this, it can be used on an industrial scale using on-demandflow chemistry. In these processes the rate of production is matched by the rate of consumption, such that the amount of diazomethane present at any one time is very low.[21][4]

Analysis

[edit]

The concentration of CH2N2 can be determined in either of two convenient ways. It can be treated with an excess ofbenzoic acid in cold Et2O. Unreactedbenzoic acid is thenback-titrated with standard NaOH. Alternatively, the concentration of CH2N2 in Et2O can be determinedspectrophotometrically at 410 nm where itsextinction coefficient, ε, is 7.2.[citation needed]The gas-phase concentration of diazomethane can be determined usingphotoacoustic spectroscopy.[4]

Related compounds

[edit]

Diazomethane is both isomeric andisoelectronic with the more stablecyanamide, but they do not interconvert.Many substituted derivatives of diazomethane have been prepared:

Safety

[edit]

Diazomethane is toxic by inhalation or by contact with the skin or eyes (TLV 0.2 ppm). Symptoms include chest discomfort, headache, weakness and, in severe cases, collapse.[26] Symptoms may be delayed. Deaths from diazomethane poisoning have been reported. In one instance a laboratory worker consumed a hamburger near a fumehood where he was generating a large quantity of diazomethane, and died four days later from fulminatingpneumonia.[27] Like any otheralkylating agent it is expected to be carcinogenic, but such concerns are overshadowed by its serious acute toxicity.

CH2N2 may explode in contact with sharp edges, such as ground-glass joints, even scratches in glassware.[28] Glassware should be inspected before use and preparation should take place behind a blast shield. Specialized kits to prepare diazomethane with flame-polished joints are commercially available.

The compound explodes when heated beyond 100 °C, exposed to intense light, alkali metals, or calcium sulfate. Use of a blast shield is highly recommended while using this compound.

Proof-of-concept work has been done withmicrofluidics, in which continuous point-of-use synthesis fromN-methyl-N-nitrosourea and 0.93 M potassium hydroxide in water was followed by point-of-use conversion withbenzoic acid, resulting in a 65% yield of the methyl benzoate ester within seconds at temperatures ranging from 0 to 50 °C. The yield was better than under capillary conditions; the microfluidics were credited with "suppression of hot spots, low holdup, isothermal conditions, and intensive mixing."[29]

Isomers

[edit]

The stable compoundcyanamide, whose minor tautomer iscarbodiimide, is an isomer of diazomethane. Less stable but still isolable isomers of diazomethane include the cyclic3H-diazirine and isocyanoamine (isodiazomethane).[30][31] In addition, the parentnitrilimine has been observed under matrix isolation conditions.[32]


References

[edit]
  1. ^ICSC 1256 – DIAZOMETHANE
  2. ^abcNIOSH Pocket Guide to Chemical Hazards."#0182".National Institute for Occupational Safety and Health (NIOSH).
  3. ^"Diazomethane".Immediately Dangerous to Life or Health Concentrations.National Institute for Occupational Safety and Health.
  4. ^abcProctor, Lee D.; Warr, Antony J. (November 2002). "Development of a Continuous Process for the Industrial Generation of Diazomethane".Organic Process Research & Development.6 (6):884–892.doi:10.1021/op020049k.
  5. ^Shioiri, Takayuki; Aoyama, Toyohiko; Snowden, Timothy (2001). "Trimethylsilyldiazomethane".Encyclopedia of Reagents for Organic Synthesis.e-EROS Encyclopedia of Reagents for Organic Synthesis.doi:10.1002/047084289X.rt298.pub2.ISBN 0471936235.
  6. ^van der Merwe, K.J.; Steyn, P.S.; Eggers, S.H. (January 1964)."A simple preparation of deuterium labelled O-methyl groups for mass spectrometry".Tetrahedron Letters.5 (52):3923–3925.doi:10.1016/S0040-4039(01)89341-2.
  7. ^Clayden, Jonathan. (2012).Organic chemistry. Greeves, Nick., Warren, Stuart G. (2nd ed.). Oxford: Oxford University Press.ISBN 978-0-19-927029-3.OCLC 761379371.
  8. ^Buchner, E.; Curtius, Th. (1885)."Synthese von Ketonsäureäthern aus Aldehyden und Diazoessigäther".Berichte der Deutschen Chemischen Gesellschaft.18 (2):2371–2377.doi:10.1002/cber.188501802118.
  9. ^Schlotterbeck, F. (1907)."The conversion of aldehydes and ketones through diazomethane".Berichte der Deutschen Chemischen Gesellschaft.40:479–483.doi:10.1002/cber.19070400179.
  10. ^abHorvath-Gerber, Filip; Ohlig, Dominik; Hii, King Kuok Mimi; Deadman, Benjamin; Attrill, Robin P.; Hellgardt, Klaus (16 February 2024)."Liquizald─Thermally Stable N -Nitrosamine Precursor for Diazomethane".Organic Process Research & Development.28 (2):597–608.doi:10.1021/acs.oprd.3c00456.
  11. ^"NITROSOMETHYLUREA".Organic Syntheses.15: 48. 1935.doi:10.15227/orgsyn.015.0048.
  12. ^"DIAZOMETHANE".Organic Syntheses.15: 3. 1935.doi:10.15227/orgsyn.015.0003.
  13. ^Pechmann, H. V. (May 1894). "Ueber Diazomethan".Berichte der Deutschen Chemischen Gesellschaft.27 (2):1888–1891.doi:10.1002/cber.189402702141.
  14. ^v. Pechmann, H. (January 1895). "Ueber Diazomethan".Berichte der Deutschen Chemischen Gesellschaft.28 (1):855–861.doi:10.1002/cber.189502801189.
  15. ^"DIAZOMETHANE".Organic Syntheses.25: 28. 1945.doi:10.15227/orgsyn.025.0028.
  16. ^"DIAZOMETHANE".Organic Syntheses.41: 16. 1961.doi:10.15227/orgsyn.041.0016.
  17. ^"Synthese und Stoffwissen".organic-btc-ilmenaus Webseite! (in German). Retrieved2020-11-02.[dead link]
  18. ^Reed, Donald E.; James A. Moore (1961). "DIAZOMETHANE".Organic Syntheses.41: 16.doi:10.15227/orgsyn.041.0016.
  19. ^"p-TOLYLSULFONYLMETHYLNITROSAMIDE".Organic Syntheses.34: 96. 1954.doi:10.15227/orgsyn.034.0096.
  20. ^P. G. Gassman & W. J. Greenlee (1988)."Dideuterodiazomethane".Organic Syntheses;Collected Volumes, vol. 6, p. 432.
  21. ^Yang, Hongwei; Martin, Benjamin; Schenkel, Berthold (20 April 2018). "On-Demand Generation and Consumption of Diazomethane in Multistep Continuous Flow Systems".Organic Process Research & Development.22 (4):446–456.doi:10.1021/acs.oprd.7b00302.
  22. ^Middleton, W. J.; Gale, D. M. (1970). "Bis(Trifluoromethyl)Diazomethane".Organic Syntheses.50: 6.doi:10.15227/orgsyn.050.0006.
  23. ^L. I. Smith; K. L. Howard (1955)."Diphenyldiazomethane"".Organic Syntheses;Collected Volumes, vol. 3, p. 351.
  24. ^T. Shioiri; T. Aoyama; S. Mori."Trimethylsilyldiazomethane".Organic Syntheses;Collected Volumes, vol. 8, p. 612.
  25. ^X. Creary (1990)."Tosylhydrazone Salt Pyrolyses: Phenydiazomethanes".Organic Syntheses;Collected Volumes, vol. 7, p. 438.
  26. ^Muir, GD (ed.) 1971,Hazards in the Chemical Laboratory, The Royal Institute of Chemistry, London.
  27. ^LeWinn, E.B. "Diazomethane Poisoning: Report of a fatal case with autopsy",The American Journal of the Medical Sciences, 1949, 218, 556-562.
  28. ^de Boer, Th. J.; Backer, H. J. (1956). "DIAZOMETHANE".Organic Syntheses.36: 16.doi:10.15227/orgsyn.036.0016.
  29. ^Wladimir Reschetilowski (2013-09-13).Microreactors in Preparative Chemistry: Practical Aspects in Bioprocessing, Nanotechnology, Catalysis and more. Wiley. p. 6–15.ISBN 9783527652914.
  30. ^Anselme, J.-P. (1977-05-01). "Isodiazomethane revisited. N-aminoisonitriles".Journal of Chemical Education.54 (5): 296.Bibcode:1977JChEd..54..296A.doi:10.1021/ed054p296.ISSN 0021-9584.
  31. ^Anselme, J. P. (1966-11-01). "The chemistry of isodiazomethane".Journal of Chemical Education.43 (11): 596.Bibcode:1966JChEd..43..596A.doi:10.1021/ed043p596.ISSN 0021-9584.
  32. ^Comprehensive organic functional group transformations II. Katritzky, Alan R., Taylor, Richard J. K. (1st ed.). Amsterdam: Elsevier. 2005.ISBN 9780080523477.OCLC 213375246.{{cite book}}: CS1 maint: others (link)

External links

[edit]
Wikimedia Commons has media related toDiazomethane.
Nitrogen species
Hydrides
Organic
Oxides
Halides
Oxidation states
−3,−2,−1, 0,+1,+2,+3,+4,+5 (a stronglyacidic oxide)
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diazomethane&oldid=1334629315"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp