Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Diaphoretickes

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia
Clade of eukaryotes

Diaphoretickes
Temporal range:Paleoproterozoic–Present[1]
Diaphoretickes diversity (clockwise from top left):sunflower (Archaeplastida),ciliate (Alveolata),kelp (Stramenopiles),cryptomonad (Cryptista),foram (Rhizaria),centrohelid (Haptista)
Scientific classificationEdit this classification
Domain:Eukaryota
Clade:Diaphoretickes
Adl et al., 2012[2]
Clades

Probably included:

Synonyms
  • CorticataLankester 1878 emend. Cavalier-Smith 2015[a]
  • eucortaCavalier-Smith 2022[6]

Diaphoretickes (from Greek διαφορετικές (diaforetikés) 'diverse') is a majorevolutionary lineage, orclade, ofeukaryotic organisms spanning over 600,000 species. They comprise an enormous diversity of life forms, from single-celledprotozoa to multicellularplants and numerous types ofalgae. The clade was discovered throughphylogenetic analyses in the 21st century that revealed a close relationship between thesupergroupsArchaeplastida (orplants in a broad sense),Haptista,Cryptista, andSAR (Stramenopiles,Alveolata andRhizaria).

Before molecular analyses recovered this clade, evolutionary biologistThomas Cavalier-Smith had already hypothesized an evolutionary proximity between plants and the remaining groups (collectively known as 'chromalveolates' in his classification system). He coined the termphotokaryotes for these organisms, as they include almost all of the photosynthetic eukaryotes. He later called themcorticates due to the presence ofcortical alveoli in many of their members.

Although Diaphoretickes contains organisms of very different morphologies, they have a few common traits. Ancestrally they are similar toexcavates, with twoflagella and a ventral feeding groove. In addition, the presence of cortical alveoli and flagellar hairs are interpreted as ancestral traits unique to the group. Some traits appearedconvergently in many groups, such as the acquisition ofchloroplasts through primary and secondaryendosymbioses and the presence ofaxopodia and aheliozoan-type cell. In particular, chloroplasts withchlorophyllc and heliozoan cells are exclusive to Diaphoretickes.

Within Diaphoretickes, Cryptista and the heliozoanMicroheliella maris form the cladePancryptista, which is the closest relative to Archaeplastida, together forming theCAM clade. Haptista and SAR are closer to each other and to a clade of flagellates known asTelonemia. In addition, three small groups of protists,Provora,Hemimastigophora andMeteora sporadica, form a clade that may belong to Diaphoretickes.

Etymology

[edit]

The name Diaphoretickes derives from Greek διαφορετικές (diaforetikés) meaning diverse, dissimilar, referring to the widemorphological and cellular diversity among members of this clade.[2]

History

[edit]

Eukaryotes, organisms whose cells contain anucleus, have been traditionally grouped into fourkingdoms:animals,plants,fungi andprotists. In the late 20th century,molecular phylogenetic analyses revealed that protists are aparaphyletic assortment of many independent evolutionary lineages orclades, from which animals, fungi and plants evolved.[7][8] However, the relationships between these clades remained difficult to assess due to technological limitations.[9] Starting in the early 2000s, improvements on phylogenetics allowed the classification of most eukaryotes into a small number of diverse clades calledsupergroups.[10][11]

In 2008, a close evolutionary relationship was discovered between some of these clades:Archaeplastida (plants and relatives; sometimes known as kingdom Plantae),[12]SAR (stramenopiles,alveolates andrhizarians), and two smaller groups of algae,haptophytes andcryptomonads. This collection of organisms contains almost all eukaryotes capable ofphotosynthesis.[13]

The SAR, haptophytes and cryptomonads were collectively known aschromalveolates[14][15] or kingdomChromista due to a hypothesized common ancestor that obtained the ability to photosynthesize, as algae included in them usually contain a unique pigment,chlorophyllc.[8][12] The relationship between plants and chromalveolates had been described earlier by evolutionary biologistThomas Cavalier-Smith (1942–2021), who referred to the clade containing both groups asphotokaryotes since most of their members are photosynthetic.[16][5] He later called themcorticates, suggesting that they share a common ancestor due to the presence ofcortical alveoli (vesicles underneath thecell membrane) in some of their members (glaucophytes and alveolates).[17][18][19] However, these names became obsolete, largely due to the discovery that chromalveolates are notmonophyletic: these algae evolved the ability to photosynthesizeindependently from one another.[13]

In 2012, a publication by the International Society of Protistologists (ISOP) established a taxonomic name for this clade,Diaphoretickes, with the followingphylogenetic definition:[2]

"The most inclusive clade containingBigelowiella natansMoestrup & Sengco 2001 (Rhizaria),Tetrahymena thermophilaNanney & McCoy 1976 (Alveolata),Thalassiosira pseudonanaCleve 1873 (Stramenopiles), andArabidopsis thaliana(Linnaeus) Heynhold, 1842 (Archaeplastida), but notHomo sapiensLinnaeus 1758 (Opisthokonta),Dictyostelium discoideumRaper 1935 (Amoebozoa) orEuglena gracilisKlebs 1883 (Excavata). This is a branch-based definition in which all of the specifiers areextant."

In the following years, higher quality phylogenetic analyses recovered more protists that fall into this definition (e.g.,telonemids,centrohelids,katablepharids), leading to new clades within Diaphoretickes, such asHaptista (centrohelids and haptophytes) andCryptista (cryptomonads, katablepharids and relatives).[20]

In 2015, Cavalier-Smith and co-authors rejected the name Diaphoretickes proposed by the ISOP, arguing that it was "an entirely unnecessary, and less euphonious third synonym with no intuitive meaning [...] which is destabilising and should not be used". Instead, they suggested converting a pre-existing taxonomic name,Corticata,[a] for the superkingdom containing Chromista and Archaeplastida (Plantae).[4] This did not reach consensus, and Diaphoretickes remains widely accepted by the scientific community as the name of this major eukaryotic clade.[21]

Description

[edit]

Diversity

[edit]
Two examples of large multicellular organisms in Diaphoretickes: thegiant redwood (left) and thegiant kelp (right)
Diversity of single-celled organisms in Diaphoretickes (clockwise from top left): a coccolithophore (Haptista), a katablepharid (Cryptista), a telonemid (Telonemia), and an opalinid (SAR)

Diaphoretickes includes eukaryotes of very differentmorphologies, cellular structures,life cycles and habitats. They range fromphotosyntheticalgae to highly specializedparasites and even large,multicellular organisms likeland plants. As such, they include most of the Earth'sbiomass, with land plants alone occupying over 81% of the total planet biomass.[22] Its major groups are:Archaeplastida,SAR supergroup,Haptista andCryptista.[21] Also included is a small group of single-celledflagellates known asTelonemia, which contains 7 species.[23]

Archaeplastida includes organisms withchloroplasts derived directly from aprimary endosymbiosis event with acyanobacterium. They amount to an estimated 450,000–500,000 species. Although known asplants by some authors,[24] archaeplastids include manyprotists that do not belong to the multicellular land plants or embryophytes (such asmosses,conifers,ferns,flowering plants). These protists are primarily thered algae,glaucophyte algae, andgreen algae, from which embryophytes evolved. Archaeplastids also include two small groups of heterotrophic flagellates closely related to red algae:rhodelphids andpicozoans.[25] Embryophytes, green algae and red algae all evolved multicellular forms and complex life cycles independently,[26] but embryophytes are distinguished by the retention of thezygote (fertilizedegg cell) as an embryo, instead of its dispersal as a single cell.[27]

The SAR supergroup is named after its three constituent clades:stramenopiles,alveolates andrhizarians. The stramenopiles gather more than 100,000 species in total[28] and comprise many heterotrophic unicellular or fungus-like organisms (e.g.,oomycetes,labyrinthulids,bicosoecids,opalinids), but the described diversity is concentrated in theochrophytes, the photosynthetic clade (e.g.,diatoms,kelp,golden algae). They are distinguished by the presence of straw-likemastigonemes (flagellar hairs) in one of their two flagella, when present.[29] The alveolates are unicellular protists primarily composed of three large, well-studied groups:ciliates (more than 8,000 species, mostly free-living heterotrophs),[30]dinoflagellates (~4,500 species, many photosynthetic)[31] andapicomplexans (more than 6,000 parasitic species), all of which are unicellular.[32] In particular, dinoflagellates, apicomplexans and various smaller groups (e.g.,chromerids) evolved from a photosynthetic ancestor and are collectively known asmyzozoans.[33] The rhizarians are a diverse group of mostlyamoeboid unicellular organisms of very different lifestyles, such as the free-livingradiolarians (over 1,000 living species)[34] andforams (over 6,700 living species),[35] the fungus-likephytomyxeans, the parasiticascetosporeans, and the photosyntheticchlorarachniophytes.[36]

Haptista is composed of two groups of single-celled organisms with mineralized scales. The first are the photosynthetichaptophytes (e.g., thecalcifyingcoccolithophores), of which there are over 500 living species.[37][38] The second are the heterotrophiccentrohelid amoebae, with around 95 species.[39] Cryptista is a group of fully single-celled flagellated organisms, among which are the photosyntheticcryptomonads (more than 100 species)[40] and related heterotrophs, namely thekatablepharids and the speciesPalpitomonas bilix.[21]

Ancestral traits

[edit]
The cell ofColponema resembles the ancestral corticate,[19][4] with its anterior (af) and posterior (pf) flagella. The ventral groove can just be seen at the top of the cell body.

Despite their large diversity of forms, a few morphological traits are common to corticates. They arebiflagellates or bikonts, meaning their cells typically have twoflagella.[19] Their cellsancestrally have a ventral groove for feeding, as observed in early-branching species (e.g., the alveolateColponema and the stramenopilesKaonashia andPlatysulcus).[41][42] These cellulartraits are typical ofexcavates, aparaphyletic group composed of the most basal eukaryotes (i.e.,Discoba,Metamonada andMalawimonada); they are likely the ancestral traits of all eukaryotes.[15][43]

In addition, as opposed to excavates, many Diaphoretickes members havecortical alveoli (flattened vesicles beneath the cell surface), such as glaucophytes, alveolates, haptophytes, telonemids[23] and some early-branching stramenopiles (e.g.,Kaonashia,bigyromonads).[42] Due to the wide occurrence of these alveoli, various researchers consider them an ancestral characteristic of Diaphoretickes.[12][23] Another frequent trait is the presence of flagellar hairs, also considered ancestral and unique to Diaphoretickes.[41]

Convergent traits

[edit]

Multiple lineages within Diaphoretickes have acquired photosyntheticplastidsindependently from each other, evolving intoalgae. They include all eukaryotic algae except foreuglenophytes, which belong to the Discoba. Archaeplastids acquired their plastids directly from primary endosymbiosis with a cyanobacterium, while all other algae have plastids originating from asecondary endosymbiosis with either a red alga (as in ochrophytes, myzozoans, cryptomonads and haptophytes) or a green alga (as in chlorarachniophytes).[13] Red algal-derived plastids are exclusive to the Diaphoretickes clade, while green algal-derived ones are also present in euglenophytes.[44][1] One rhizarian species,Paulinella chromatophora, experienced an event of primary endosymbiosis with a different kind of cyanobacterium.[45]

The exact order of the red algal-derived plastid acquisitions is not yet known. Two main hypotheses agree that cryptophytes were the first to obtain them, and the remaining groups obtained theirs by endosymbiosis with a cryptophyte.[1] A third hypothesis proposed in 2024 suggests that there were two independent endosymbioses of a red alga in cryptophytes and ochrophytes, which in turn originated the plastids of haptophytes and myzozoans, respectively.[46]

Plastid acquisitions across eukaryotes, shown in discontinuous arrows: blue for the primary plastids derived directly from a cyanobacterium, and red and green for the secondary plastids derived from red algae and green algae, respectively. Red arrows are placed according to the 2024 hypothesis;[46] disagreements with previous hypotheses are marked '?'.[1]

Diaphoretickes also includes allamoebae that haveaxopodia, stiff filaments used for feeding that branch radially from the cell, a trait acquired independently in various groups. These were historically known as Actinopoda, and were divided into the marineradiolaria (rhizarians) and the mostly freshwaterheliozoa ("sun animalcules").[47] The heliozoa are primarily the centrohelids (relatives of haptophytes),actinophryids (stramenopiles) anddesmothoracids (rhizarians).[48] There are also some lone heliozoan species such asMicroheliella maris, thesister group of Cryptista.[49] Even heliozoa that have not been genetically sequenced are presumed to belong to Diaphoretickes.[50] Cavalier-Smith argued that the ancestral configuration of thecytoskeleton of corticates was apreadaptation that made it easier for them to evolve axopodia numerous independent times.[51]

Evolution

[edit]

Evolutionary relationships are still uncertain between the different clades of Diaphoretickes.Haptista andCryptista, initially hypothesized as relatives of each other (collectively known as the taxonHacrobia), were later revealed to be more distantly related.[52] In particular, Cryptista and the speciesMicroheliella maris form a clade known asPancryptista, which in turn is the closest relative ofArchaeplastida, together forming the proposed 'CAM' clade.[49][53]Telonemia, previously assigned to Hacrobia,[4] is sometimes resolved as the sister clade of theSAR supergroup, forming the hypothesized TSAR clade,[23] while other studies resolve it as more closely related toHaptista.[54]

Three small groups of protists—provorans,hemimastigotes, and the speciesMeteora sporadica—form a clade that may be either related to or inside of Diaphoretickes, depending on the analysis.[54][55][56] Before phylogenomic data fromMeteora and provorans became available, there was already a known affinity between hemimastigotes and Diaphoretickes, although the exact position of hemimastigotes remained unclear.[57] Cavalier-Smith proposed that hemimastigotes were the closest relatives of Diaphoretickes (known by him as corticates), and established the nameeucorta (eu-, 'well-developed' andcortex, 'bark') for their suggested clade, since both groups have a cortical pellicle: withcortical alveoli in corticates, and with microtubules and a proteinaceous thickening in hemimastigotes instead.[6] According to the phylogenetic definition of Diaphoretickes, any organism that is more closely related to them than to Discoba or Amorphea is considered part of them, which renders 'eucorta' a synonym of Diaphoretickes.[21]

The following cladogram summarizes the relationships within Diaphoretickes, according tophylogenomic analyses of the 2020s.[58][55][54][56] Chromalveolates are marked *; clades containing heliozoa are marked **.[4]

Diaphoretickes 
(corticates) 

There is uncertainty regarding relationships with the remaining eukaryotic clades.[59] Between Diaphoretickes andAmorphea, the two major clades of eukaryotes,[21] there are many smaller clades—Discoba,Metamonada,Malawimonada,Ancyromonadida,CRuMs, and the aforementioned provoran-hemimastigote-Meteora clade—that may branch closer to one or the other, or closer to the root of the eukaryotic tree, depending on the analysis.[55][43] Only some analyses find a closer relationship between Diaphoretickes and theDiscoba clade, together known asDiphoda.[54] According to a 2021molecular clock analysis, Diaphoretickes diverged from other eukaryotes during thePaleoproterozoic (2.2 to 1.6 billion years ago), although the first putative fossils originated during theMesoproterozoic.[1]

Notes

[edit]
  1. ^abThe taxonomic name Corticata has changed in composition several times. It was first coined by zoologistEdwin Ray Lankester in 1878 as one of the two categories of theProtozoa (the other being Gymnomyxa), which he interpreted as a subkingdom of animals.[3] In his system, Corticata includedflagellated protists, many of which fall in Diaphoretickes (e.g., heterokonts, dinoflagellates, ciliates),[2][4] while Gymnomyxa (meaning 'naked slime') includedamoebae. In 2002, evolutionary biologistThomas Cavalier-Smith adopted these two names as subkingdoms of his own proposed kingdom Protozoa. He redefined Corticata to groupExcavata andRhizaria, due to similarities in theircytoskeleton.[5] This definition waspolyphyletic and fell out of use. After the description of Diaphoretickes, Cavalier-Smith repurposed Corticata in 2015 as its synonym.[4]

References

[edit]
  1. ^abcdeStrassert, Jürgen F. H.; Irisarri, Iker; Williams, Tom A.; Burki, Fabien (25 March 2021)."A molecular timescale for eukaryote evolution with implications for the origin of red algal-derived plastids"(PDF).Nature Communications.12 (1): 1879.Bibcode:2021NatCo..12.1879S.doi:10.1038/s41467-021-22044-z.ISSN 2041-1723.PMC 7994803.PMID 33767194. Retrieved13 May 2025.
  2. ^abcdAdl, Sina M.; Simpson, Alastair G. B.; Lane, Christopher E.; Lukeš, Julius; Bass, David; et al. (28 September 2012)."The Revised Classification of Eukaryotes".The Journal of Eukaryotic Microbiology.59 (2):429–514.doi:10.1111/j.1550-7408.2012.00644.x.PMC 3483872.PMID 23020233.
  3. ^Lankester, E. Ray (September 1878)."Preface to the English translation". In Gegenbaur, Carl (ed.).Elements of Comparative Anatomy. London: MacMillan and co. p. xviii.
  4. ^abcdefCavalier-Smith, Thomas; Chao, Ema E.; Lewis, Rhodri (2015)."Multiple origins of Heliozoa from flagellate ancestors: New cryptist subphylum Corbihelia, superclass Corbistoma, and monophyly of Haptista, Cryptista, Hacrobia and Chromista".Molecular Phylogenetics and Evolution.93:331–362.Bibcode:2015MolPE..93..331C.doi:10.1016/j.ympev.2015.07.004.PMID 26234272.
  5. ^abCavalier-Smith, T (1 March 2002)."The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa".International Journal of Systematic and Evolutionary Microbiology.52 (2):297–354.doi:10.1099/00207713-52-2-297.ISSN 1466-5026.PMID 11931142.
  6. ^abCavalier-Smith, Thomas (23 December 2021)."Ciliary transition zone evolution and the root of the eukaryote tree: implications for opisthokont origin and classification of kingdoms Protozoa, Plantae, and Fungi".Protoplasma.259 (3):487–593.doi:10.1007/s00709-021-01665-7.PMC 9010356.PMID 34940909.
  7. ^Scamardella JM (1999)."Not plants or animals: A brief history of the origin of Kingdoms Protozoa, Protista, and Protoctista".International Microbiology.2 (4):207–221.PMID 10943416.
  8. ^abBlackwell, Will H. (August 2009)."Chromista revisited: a dilema of overlapping putative kingdoms, and the attempted application of the botanical code of nomenclature"(PDF).Phytologia.91 (2):191–225. Retrieved9 June 2025.
  9. ^Keeling, Patrick J.; Burger, Gertraud; Durnford, Dion G.; Lang, B. Franz; Lee, Robert W.; Pearlman, Ronald E.; Roger, Andrew J.; Gray, Michael W. (2005). "The tree of eukaryotes".Trends in Ecology & Evolution.20 (12):670–676.doi:10.1016/j.tree.2005.09.005.PMID 16701456.
  10. ^Burki, Fabien; Shalchian-Tabrizi, Kamran; Minge, Marianne; Skjæveland, Åsmund; Nikolaev, Sergey I.; Jakobsen, Kjetill S.; Pawlowski, Jan (29 August 2007)."Phylogenomics Reshuffles the Eukaryotic Supergroups".PLOS ONE.2 (8) e790.Bibcode:2007PLoSO...2..790B.doi:10.1371/journal.pone.0000790.ISSN 1932-6203.PMC 1949142.PMID 17726520.
  11. ^Burki, Fabien; Roger, Andrew J.; Brown, Matthew W.; Simpson, Alastair G.B. (2020)."The New Tree of Eukaryotes".Trends in Ecology & Evolution.35 (1):43–55.Bibcode:2020TEcoE..35...43B.doi:10.1016/j.tree.2019.08.008.PMID 31606140. Retrieved2025-06-05.
  12. ^abcCavalier-Smith, Thomas (23 June 2010)."Kingdoms Protozoa and Chromista and the eozoan root of the eukaryotic tree".Biology Letters.6 (3):342–345.doi:10.1098/rsbl.2009.0948.ISSN 1744-9561.PMC 2880060.PMID 20031978.
  13. ^abcBurki, Fabien; Shalchian-Tabrizi, Kamran; Pawlowski, Jan (23 August 2008)."Phylogenomics reveals a new 'megagroup' including most photosynthetic eukaryotes".Biology Letters.4 (4):366–369.doi:10.1098/rsbl.2008.0224.ISSN 1744-9561.PMC 2610160.PMID 18522922.
  14. ^Adl, Sina M.; Simpson, Alastair G. B.; Farmer, Mark A.; Andersen, Robert A.; Anderson, O. Roger; et al. (19 October 2005)."The New Higher Level Classification of Eukaryotes with Emphasis on the Taxonomy of Protists".The Journal of Eukaryotic Microbiology.52 (2):399–451.doi:10.1111/j.1550-7408.2005.00053.x.PMID 16248873.
  15. ^abHampl, Vladimir; Hug, Laura; Leigh, Jessica W.; Dacks, Joel B.; Lang, B. Franz; Simpson, Alastair G. B.; Roger, Andrew J. (10 March 2009)."Phylogenomic analyses support the monophyly of Excavata and resolve relationships among eukaryotic "supergroups"".Proceedings of the National Academy of Sciences.106 (10):3859–3864.Bibcode:2009PNAS..106.3859H.doi:10.1073/pnas.0807880106.ISSN 0027-8424.PMC 2656170.PMID 19237557.
  16. ^Cavalier-Smith, Tom (1999). "Principles of protein and lipid targeting in secondary symbiogenesis: euglenoid, dinoflagellate, and sporozoan plastid origins and the eukaryote family tree".Journal of Eukaryotic Microbiology.46 (4):347–366.doi:10.1111/j.1550-7408.1999.tb04614.x.PMID 18092388.
  17. ^Cavalier-Smith, Thomas (2003). "Protist phylogeny and the high-level classification of Protozoa".European Journal of Protistology.39 (4):338–348.doi:10.1078/0932-4739-00002.
  18. ^Cavalier-Smith, Thomas (24 March 2009)."Megaphylogeny, Cell Body Plans, Adaptive Zones: Causes and Timing of Eukaryote Basal Radiations".Journal of Eukaryotic Microbiology.56 (1):26–33.doi:10.1111/j.1550-7408.2008.00373.x.ISSN 1066-5234.PMID 19340985.
  19. ^abcCavalier-Smith T, Chao EE, Snell EA, Berney C, Fiore-Donno AM, Lewis R (December 2014)."Multigene eukaryote phylogeny reveals the likely protozoan ancestors of opisthokonts (animals, fungi, choanozoans) and Amoebozoa".Molecular Phylogenetics and Evolution.81:71–85.Bibcode:2014MolPE..81...71C.doi:10.1016/j.ympev.2014.08.012.PMID 25152275.
  20. ^Burki, Fabien; Kaplan, Maia; Tikhonenkov, Denis V.; Zlatogursky, Vasily; Minh, Bui Quang; Radaykina, Liudmila V.; Smirnov, Alexey; Mylnikov, Alexander P.; Keeling, Patrick J. (27 January 2016)."Untangling the early diversification of eukaryotes: a phylogenomic study of the evolutionary origins of Centrohelida, Haptophyta and Cryptista".Proceedings of the Royal Society B: Biological Sciences.283 (1823) 20152802.doi:10.1098/rspb.2015.2802.ISSN 0962-8452.PMC 4795036.PMID 26817772.
  21. ^abcdeAdl, Sina M.; Bass, David; Lane, Christopher E.; Lukeš, Julius; Schoch, Conrad L.; et al. (26 September 2018)."Revisions to the Classification, Nomenclature, and Diversity of Eukaryotes".The Journal of Eukaryotic Microbiology.66 (1):4–119.doi:10.1111/JEU.12691.PMC 6492006.PMID 30257078.
  22. ^Bar-On YM, Phillips R, Milo R (June 2018)."The biomass distribution on Earth".Proceedings of the National Academy of Sciences of the United States of America.115 (25):6506–6511.Bibcode:2018PNAS..115.6506B.doi:10.1073/pnas.1711842115.PMC 6016768.PMID 29784790.
  23. ^abcdTikhonenkov, Denis V.; Jamy, Mahwash; Borodina, Anastasia S.; Belyaev, Artem O.; Zagumyonnyi, Dmitry G.; Prokina, Kristina I.; Mylnikov, Alexander P.; Burki, Fabien; Karpov, Sergey A. (16 March 2022)."On the origin of TSAR: morphology, diversity and phylogeny of Telonemia".Open Biology.12 (3) 210325. The Royal Society.doi:10.1098/rsob.210325.ISSN 2046-2441.PMC 8924772.PMID 35291881.
  24. ^Bowles, Alexander M.C.; Williamson, Christopher J.; Williams, Tom A.; Lenton, Timothy M.; Donoghue, Philip C.J. (2023)."The origin and early evolution of plants".Trends in Plant Science.28 (3):312–329.Bibcode:2023TPS....28..312B.doi:10.1016/j.tplants.2022.09.009.hdl:10871/131900.PMID 36328872.
  25. ^Prokina, Kristina I.; Tikhonenkov, Denis V.; López-García, Purificación; Moreira, David (2023)."Morphological and molecular characterization of a new member of the phylum Rhodelphidia".Journal of Eukaryotic Microbiology.71 (2) e12995.doi:10.1111/jeu.12995.PMID 37548159.
  26. ^Lamża, Łukasz (2023)."Diversity of 'simple' multicellular eukaryotes: 45 independent cases and six types of multicellularity".Biological Reviews.98 (6):2188–2209.doi:10.1111/brv.13001.ISSN 1464-7931.PMID 37475165.
  27. ^Niklas, Karl J.; Kutschera, Ulrich (2010). "The evolution of the land plant life cycle".New Phytologist.185 (1):27–41.Bibcode:2010NewPh.185...27N.doi:10.1111/j.1469-8137.2009.03054.x.ISSN 0028-646X.PMID 19863728.
  28. ^H.S. Yoon; R.A. Andersen; S.M. Boo; D. Bhattacharya (17 February 2009)."Stramenopiles".Encyclopedia of Microbiology (Third ed.). pp. 721–731.doi:10.1016/B978-012373944-5.00253-4.ISBN 978-0-12-373944-5. Retrieved2 March 2024.
  29. ^Jirsová, Dagmar; Wideman, Jeremy G. (30 July 2024)."Integrated overview of stramenopile ecology, taxonomy, and heterotrophic origin".The ISME Journal.18 (1) wrae150.doi:10.1093/ismejo/wrae150.PMC 11412368.PMID 39077993.
  30. ^Lynn, Denis H. (2017). "Ciliophora". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 679–730.doi:10.1007/978-3-319-28149-0_23.ISBN 978-3-319-28147-6.
  31. ^Saldarriaga, Juan F.; Taylor, F. J. R. 'Max' (2017). "Dinoflagellata". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 625–678.doi:10.1007/978-3-319-28149-0_22.ISBN 978-3-319-28147-6.
  32. ^Votýpka, Jan; Modrý, David; Oborník, Miroslav; Šlapeta, Jan; Lukeš, Julius (2017). "Apicomplexa". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 1 (2nd ed.). Springer. pp. 567–624.doi:10.1007/978-3-319-28149-0_20.ISBN 978-3-319-28147-6.
  33. ^Muñoz-Gómez, Sergio A.; Slamovits, Claudio H. (2018). "Plastid Genomes in the Myzozoa".Advances in Botanical Research. Vol. 85. Elsevier. pp. 55–94.doi:10.1016/bs.abr.2017.11.015.ISBN 978-0-12-813457-3.
  34. ^Biard, Tristan (2022)."Diversity and ecology of Radiolaria in modern oceans".Environmental Microbiology.24 (5):2179–2200.Bibcode:2022EnvMi..24.2179B.doi:10.1111/1462-2920.16004.PMC 9322464.PMID 35412019.
  35. ^Pawlowski, J.; Lejzerowicz, F.; Esling, P. (2014-10-01)."Next-Generation Environmental Diversity Surveys of Foraminifera: Preparing the Future".The Biological Bulletin.227 (2):93–106.doi:10.1086/BBLv227n2p93.ISSN 0006-3185.PMID 25411369.S2CID 24388876.
  36. ^Burki F, Keeling PJ (February 2014)."Rhizaria".Current Biology.24 (3): R103–7.Bibcode:2014CBio...24.R103B.doi:10.1016/j.cub.2013.12.025.PMID 24502779.
  37. ^Eikrem, Wenche; Medlin, Linda K.; Henderiks, Jorijntje; Rokitta, Sebastian; Rost, Björn; et al. (2017). "Haptophyta". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 2 (2nd ed.). Springer. pp. 893–954.doi:10.1007/978-3-319-28149-0_38.ISBN 978-3-319-28147-6.
  38. ^Guiry, Michael D. (2024)."How many species of algae are there? A reprise. Four kingdoms, 14 phyla, 63 classes and still growing".Journal of Phycology.60 (2):214–228.Bibcode:2024JPcgy..60..214G.doi:10.1111/jpy.13431.PMID 38245909.
  39. ^Cavalier-Smith, Thomas; von der Heyden, Sophie (2007). "Molecular phylogeny, scale evolution and taxonomy of centrohelid heliozoa".Molecular Phylogenetics and Evolution.44 (3):1186–1203.Bibcode:2007MolPE..44.1186C.doi:10.1016/j.ympev.2007.04.019.PMID 17588778.
  40. ^Hoef-Emden, Kerstin; Archibald, John M. (2017). "Cryptophyta (Cryptomonads)". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 2 (2nd ed.). Springer. pp. 851–892.doi:10.1007/978-3-319-28149-0_35.ISBN 978-3-319-28147-6.
  41. ^abCavalier-Smith, Thomas (May 2013). "Early evolution of eukaryote feeding modes, cell structural diversity, and classification of the protozoan phyla Loukozoa, Sulcozoa, and Choanozoa".European Journal of Protistology.49 (2):115–178.doi:10.1016/j.ejop.2012.06.001.PMID 23085100.
  42. ^abWeston, Elizabeth J.; Eglit, Yana; Simpson, Alastair G.B. (2023)."Kaonashia insperata gen. et sp. nov., a eukaryotrophic flagellate, represents a novel major lineage of heterotrophic stramenopiles".Journal of Eukaryotic Microbiology.71 (1) e13003.doi:10.1111/jeu.13003.PMID 37803921.
  43. ^abWilliamson, Kelsey; Eme, Laura; Baños, Hector; McCarthy, Charley G. P.; Susko, Edward; et al. (24 April 2025)."A robustly rooted tree of eukaryotes reveals their excavate ancestry".Nature.640 (8060):974–981.Bibcode:2025Natur.640..974W.doi:10.1038/s41586-025-08709-5.PMID 40074902.
  44. ^Eliáš, Marek (2021)."Protist diversity: Novel groups enrich the algal tree of life".Current Biology.31 (11):R733 –R735.Bibcode:2021CBio...31.R733E.doi:10.1016/j.cub.2021.04.025.PMID 34102125. Retrieved13 May 2025.
  45. ^Mackiewicz, Paweł; Bodył, Andrzej; Gagat, Przemysław (2012)."Possible import routes of proteins into the cyanobacterial endosymbionts/plastids ofPaulinella chromatophora"(PDF).Theory in Biosciences.131 (1):1–18.doi:10.1007/s12064-011-0147-7.ISSN 1431-7613.PMC 3334493.PMID 22209953. Retrieved3 July 2025.
  46. ^abPietluch, Filip; Mackiewicz, Paweł; Ludwig, Kacper; Gagat, Przemysław (3 September 2024)."A New Model and Dating for the Evolution of Complex Plastids of Red Alga Origin".Genome Biology and Evolution.16 (9: evae192) evae192.doi:10.1093/gbe/evae192.PMC 11413572.PMID 39240751.
  47. ^Gast, Rebecca J. (2017)."Centrohelida and Other Heliozoan-Like Protists"(PDF). In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 2 (2nd ed.). Cham: Springer International Publishing. pp. 955–971.doi:10.1007/978-3-319-28149-0_28.ISBN 978-3-319-28149-0.LCCN 2017945328. Retrieved9 June 2025.
  48. ^Nikolaev, Sergey I.; Berney, Cédric; Fahrni, José F.; Bolivar, Ignacio; Polet, Stephane; Mylnikov, Alexander P.; Aleshin, Vladimir V.; Petrov, Nikolai B.; Pawlowski, Jan (25 May 2004)."The twilight of Heliozoa and rise of Rhizaria, an emerging supergroup of amoeboid eukaryotes".Proceedings of the National Academy of Sciences.101 (21):8066–8071.doi:10.1073/pnas.0308602101.ISSN 0027-8424.PMC 419558.PMID 15148395.
  49. ^abYazaki, Euki; Yabuki, Akinori; Imaizumi, Ayaka; Kume, Keitaro; Hashimoto, Tetsuo; Inagaki, Yuji (2022)."The closest lineage of Archaeplastida is revealed by phylogenomics analyses that includeMicroheliella maris".Open Biology.12 (4) 210376.doi:10.1098/rsob.210376.PMC 9006020.PMID 35414259.
  50. ^Shishkin, Yegor; Drachko, Daria; Zlatogursky, Vasily V. (22 April 2021)."The smallest known heliozoans are theErebor lineage (nom. clad. n.) insideMicroheliella maris (Eukaryota, Diaphoretickes), with the amendation of M. maris diagnosis and description ofBerkeleyaesol magnus gen. nov., comb. nov. (Eukaryota, incertae sedis)".International Journal of Systematic and Evolutionary Microbiology.71 (4).doi:10.1099/ijsem.0.004776.ISSN 1466-5026.PMID 33886450.
  51. ^Cavalier-Smith, Thomas (5 September 2017)."Kingdom Chromista and its eight phyla: a new synthesis emphasising periplastid protein targeting, cytoskeletal and periplastid evolution, and ancient divergences".Protoplasma.255 (1):297–357.doi:10.1007/s00709-017-1147-3.PMC 5756292.PMID 28875267.
  52. ^Burki, Fabien; Okamoto, Noriko; Pombert, Jean-François; Keeling, Patrick J. (2012)."The evolutionary history of haptophytes and cryptophytes: phylogenomic evidence for separate origins".Proceedings of the Royal Society of London B: Biological Sciences.279 (1736):2246–2254.doi:10.1098/rspb.2011.2301.PMC 3321700.PMID 22298847.
  53. ^Yazaki, Euki; Yabuki, Akinori; Nishimura, Yuki; Shiratori, Takashi; Hashimoto, Tetsuo; Inagaki, Yuji (4 November 2022)."Microheliella maris possesses the most gene-rich mitochondrial genome in Diaphoretickes".Frontiers in Ecology and Evolution.10 1030570.Bibcode:2022FrEEv..1030570Y.doi:10.3389/fevo.2022.1030570.ISSN 2296-701X.
  54. ^abcdTorruella, Guifré; Galindo, Luis Javier; Moreira, David; López-García, Purificación (6 January 2025)."Phylogenomics of neglected flagellated protists supports a revised eukaryotic tree of life".Current Biology.35 (1): 198–207.e4.Bibcode:2025CBio...35..198T.bioRxiv 10.1101/2024.05.15.594285.doi:10.1016/j.cub.2024.10.075.ISSN 1879-0445.PMID 39642877.
  55. ^abcEglit, Yana; Shiratori, Takashi; Jerlström-Hultqvist, Jon; Williamson, Kelsey; Roger, Andrew J.; Ishida, Ken-Ichiro; Simpson, Alastair G.B. (22 January 2024)."Meteora sporadica, a protist with incredible cell architecture, is related to Hemimastigophora".Current Biology.34 (2): 451–459.e6.doi:10.1016/j.cub.2023.12.032.PMID 38262350. Retrieved15 June 2025.
  56. ^abČepička, Ivan; Valt, Marek; Pánek, Tomáš; Mirzoyan, Seda; Tice, Alexander; Jones, Robert; Dohnálek, Vít; Dolezal, Pavel; Mikšátko, Jiří; Rotterová, Johana; Hrubá, Pavla; Brown, Matthew (15 May 2025). "Rare microbial relict sheds light on an ancient eukaryotic supergroup (PREPRINT Version 1)".doi:10.21203/rs.3.rs-5245440/v1.{{cite web}}:Missing or empty|url= (help)
  57. ^Lax, Gordon; Eglit, Yana; Eme, Laura; Bertrand, Erin M.; Roger, Andrew J.; Simpson, Alastair G. B. (2018). "Hemimastigophora is a novel supra-kingdom-level lineage of eukaryotes".Nature.564 (7736):410–414.Bibcode:2018Natur.564..410L.doi:10.1038/s41586-018-0708-8.PMID 30429611.S2CID 205570993.
  58. ^Schön, Max E.; Zlatogursky, Vasily V.; Singh, Rohan P.; Poirier, Camille; Wilken, Susanne; et al. (17 November 2021)."Single cell genomics reveals plastid-lacking Picozoa are close relatives of red algae"(PDF).Nature Communications.12 (1): 6651.Bibcode:2021NatCo..12.6651S.doi:10.1038/s41467-021-26918-0.ISSN 2041-1723.PMC 8599508.PMID 34789758. Retrieved2 July 2025.
  59. ^Simpson, Alastair G. B.; Slamovits, Claudio H.; Archibald, John M. (2017)."Protist Diversity and Eukaryote Phylogeny". In Archibald, John M.; Simpson, Alastair G.B.; Slamovits, Claudio H. (eds.).Handbook of the Protists. Vol. 1 (2nd ed.). Cham: Springer International Publishing. pp. 1–22.doi:10.1007/978-3-319-28149-0_45.ISBN 978-3-319-28149-0.LCCN 2017945328.
Eukaryote classification
Amoebozoa
Holomycota
Filozoa
Choanozoa
Haptista
    SAR    
Rhizaria
Alveolata
Myzozoa
Stramenopiles
Bigyra*
Gyrista
Pancryptista
Cryptista
Archaeplastida
(plantssensu lato)
Viridiplantae
(green plants or
plantssensu stricto)
Streptophyta
Provora
Membrifera
Hemimastigophora
Discoba
Discicristata
Metamonada*
Malawimonadida
Ancyromonadida
CRuMs
Genera of
uncertain affiliation
Acritarchs
and other fossils
Retrieved from "https://en.wikipedia.org/w/index.php?title=Diaphoretickes&oldid=1324005397"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp