Risk metric quantifying variability of returns around their expected value
Infinancial mathematics , adeviation risk measure is a function to quantifyfinancial risk (and not necessarilydownside risk ) in a different method than a generalrisk measure . Deviation risk measures generalize the concept ofstandard deviation .
Mathematical definition [ edit ] A functionD : L 2 → [ 0 , + ∞ ] {\displaystyle D:{\mathcal {L}}^{2}\to [0,+\infty ]} , whereL 2 {\displaystyle {\mathcal {L}}^{2}} is theL2 space ofrandom variables (randomportfolio returns ), is a deviation risk measure if
Shift-invariant:D ( X + r ) = D ( X ) {\displaystyle D(X+r)=D(X)} for anyr ∈ R {\displaystyle r\in \mathbb {R} } Normalization:D ( 0 ) = 0 {\displaystyle D(0)=0} Positively homogeneous:D ( λ X ) = λ D ( X ) {\displaystyle D(\lambda X)=\lambda D(X)} for anyX ∈ L 2 {\displaystyle X\in {\mathcal {L}}^{2}} andλ > 0 {\displaystyle \lambda >0} Sublinearity:D ( X + Y ) ≤ D ( X ) + D ( Y ) {\displaystyle D(X+Y)\leq D(X)+D(Y)} for anyX , Y ∈ L 2 {\displaystyle X,Y\in {\mathcal {L}}^{2}} Positivity:D ( X ) > 0 {\displaystyle D(X)>0} for all nonconstantX , andD ( X ) = 0 {\displaystyle D(X)=0} for any constantX .[ 1] [ 2] Relation to risk measure [ edit ] There is aone-to-one relationship between a deviation risk measureD and an expectation-boundedrisk measure R where for anyX ∈ L 2 {\displaystyle X\in {\mathcal {L}}^{2}}
R is expectation bounded ifR ( X ) > E [ − X ] {\displaystyle R(X)>\mathbb {E} [-X]} for any nonconstantX andR ( X ) = E [ − X ] {\displaystyle R(X)=\mathbb {E} [-X]} for any constantX .
IfD ( X ) < E [ X ] − e s s inf X {\displaystyle D(X)<\mathbb {E} [X]-\operatorname {ess\inf } X} for everyX (wheree s s inf {\displaystyle \operatorname {ess\inf } } is theessential infimum ), then there is a relationship betweenD and acoherent risk measure .[ 1]
The most well-known examples of risk deviation measures are:[ 1]
Standard deviation σ ( X ) = E [ ( X − E X ) 2 ] {\displaystyle \sigma (X)={\sqrt {E[(X-EX)^{2}]}}} ;Average absolute deviation M A D ( X ) = E ( | X − E X | ) {\displaystyle MAD(X)=E(|X-EX|)} ;Lower and upper semi-deviationsσ − ( X ) = E [ ( X − E X ) − 2 ] {\displaystyle \sigma _{-}(X)={\sqrt {{E[(X-EX)_{-}}^{2}]}}} andσ + ( X ) = E [ ( X − E X ) + 2 ] {\displaystyle \sigma _{+}(X)={\sqrt {{E[(X-EX)_{+}}^{2}]}}} , where[ X ] − := max { 0 , − X } {\displaystyle [X]_{-}:=\max\{0,-X\}} and[ X ] + := max { 0 , X } {\displaystyle [X]_{+}:=\max\{0,X\}} ; Range-based deviations, for example,D ( X ) = E X − inf X {\displaystyle D(X)=EX-\inf X} andD ( X ) = sup X − inf X {\displaystyle D(X)=\sup X-\inf X} ; Conditional value-at-risk (CVaR) deviation, defined for anyα ∈ ( 0 , 1 ) {\displaystyle \alpha \in (0,1)} byC V a R α Δ ( X ) ≡ E S α ( X − E X ) {\displaystyle {\rm {CVaR}}_{\alpha }^{\Delta }(X)\equiv ES_{\alpha }(X-EX)} , whereE S α ( X ) {\displaystyle ES_{\alpha }(X)} isExpected shortfall . Unitized risk – Relative measure of dispersion expressed as the ratio of standard deviation to the meanPages displaying short descriptions of redirect targets ^a b c Rockafellar, Tyrrell; Uryasev, Stanislav; Zabarankin, Michael (2002). "Deviation Measures in Risk Analysis and Optimization".SSRN 365640 . {{cite journal }}:Cite journal requires|journal= (help ) ^ Cheng, Siwei; Liu, Yanhui; Wang, Shouyang (2004). "Progress in Risk Measurement".Advanced Modelling and Optimization .6 (1).