Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Deviation risk measure

From Wikipedia, the free encyclopedia
Risk metric quantifying variability of returns around their expected value

Infinancial mathematics, adeviation risk measure is a function to quantifyfinancial risk (and not necessarilydownside risk) in a different method than a generalrisk measure. Deviation risk measures generalize the concept ofstandard deviation.

Mathematical definition

[edit]

A functionD:L2[0,+]{\displaystyle D:{\mathcal {L}}^{2}\to [0,+\infty ]}, whereL2{\displaystyle {\mathcal {L}}^{2}} is theL2 space ofrandom variables (randomportfolio returns), is a deviation risk measure if

  1. Shift-invariant:D(X+r)=D(X){\displaystyle D(X+r)=D(X)} for anyrR{\displaystyle r\in \mathbb {R} }
  2. Normalization:D(0)=0{\displaystyle D(0)=0}
  3. Positively homogeneous:D(λX)=λD(X){\displaystyle D(\lambda X)=\lambda D(X)} for anyXL2{\displaystyle X\in {\mathcal {L}}^{2}} andλ>0{\displaystyle \lambda >0}
  4. Sublinearity:D(X+Y)D(X)+D(Y){\displaystyle D(X+Y)\leq D(X)+D(Y)} for anyX,YL2{\displaystyle X,Y\in {\mathcal {L}}^{2}}
  5. Positivity:D(X)>0{\displaystyle D(X)>0} for all nonconstantX, andD(X)=0{\displaystyle D(X)=0} for any constantX.[1][2]

Relation to risk measure

[edit]

There is aone-to-one relationship between a deviation risk measureD and an expectation-boundedrisk measureR where for anyXL2{\displaystyle X\in {\mathcal {L}}^{2}}

R is expectation bounded ifR(X)>E[X]{\displaystyle R(X)>\mathbb {E} [-X]} for any nonconstantX andR(X)=E[X]{\displaystyle R(X)=\mathbb {E} [-X]} for any constantX.

IfD(X)<E[X]essinfX{\displaystyle D(X)<\mathbb {E} [X]-\operatorname {ess\inf } X} for everyX (whereessinf{\displaystyle \operatorname {ess\inf } } is theessential infimum), then there is a relationship betweenD and acoherent risk measure.[1]

Examples

[edit]

The most well-known examples of risk deviation measures are:[1]

See also

[edit]
  • Unitized risk – Relative measure of dispersion expressed as the ratio of standard deviation to the meanPages displaying short descriptions of redirect targets

References

[edit]
  1. ^abcRockafellar, Tyrrell; Uryasev, Stanislav; Zabarankin, Michael (2002). "Deviation Measures in Risk Analysis and Optimization".SSRN 365640.{{cite journal}}:Cite journal requires|journal= (help)
  2. ^Cheng, Siwei; Liu, Yanhui; Wang, Shouyang (2004). "Progress in Risk Measurement".Advanced Modelling and Optimization.6 (1).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Deviation_risk_measure&oldid=1331820473"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp