Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Delannoy number

From Wikipedia, the free encyclopedia
Number of paths between grid corners, allowing diagonal steps
Delannoy number
Named afterHenri–Auguste Delannoy
No. of known termsinfinity
FormulaD(m,n)=k=0min(m,n)(mk)(nk)2k{\displaystyle D(m,n)=\sum _{k=0}^{\min(m,n)}{\binom {m}{k}}{\binom {n}{k}}2^{k}}
OEIS index

Inmathematics, aDelannoy numberD{\displaystyle D} counts the paths from the southwest corner (0, 0) of a rectangular grid to the northeast corner (m,n), using only single steps north, northeast, or east. The Delannoy numbers are named after French army officer and amateur mathematicianHenri Delannoy.[1]

The Delannoy numberD(m,n){\displaystyle D(m,n)} also counts theglobal alignments of two sequences of lengthsm{\displaystyle m} andn{\displaystyle n},[2] the points in anm-dimensionalinteger lattice orcross polytope which are at mostn steps from the origin,[3] and, incellular automata, the cells in anm-dimensionalvon Neumann neighborhood of radiusn.[4]

Example

[edit]

The Delannoy numberD(3, 3) equals 63. The following figure illustrates the 63 Delannoy paths from (0, 0) to (3, 3):

The subset of paths that do not rise above the SW–NE diagonal are counted by a related family of numbers, theSchröder numbers.

Delannoy array

[edit]

TheDelannoy array is aninfinite matrix of the Delannoy numbers:[5]

 m
n 
012345678
0111111111
11357911131517
2151325416185113145
3172563129231377575833
41941129321681128922413649
51116123168116833653718313073
6113853771289365389891982540081
7115113575224171831982548639108545
811714583336491307340081108545265729
9119181115956412236375517224143598417

In this array, the numbers in the first row are all one, the numbers in the second row are theodd numbers, the numbers in the third row are thecentered square numbers, and the numbers in the fourth row are thecentered octahedral numbers. Alternatively, the same numbers can be arranged in atriangular array resemblingPascal's triangle, also called thetribonacci triangle,[6] in which each number is the sum of the three numbers above it:

            1          1   1        1   3   1      1   5   5   1    1   7  13   7   1  1   9  25  25   9   11  11  41  63  41  11   1

The row sums of the triangle give successivePell numbers 1, 2, 5, 12, 29, 70, 169,... the sums of the rising diagonals give thetribonacci numbers 1, 1, 2, 4, 7, 13, 24,... [7]

Central Delannoy numbers

[edit]

Thecentral Delannoy numbersD(n) =D(n,n) are the numbers for a squaren ×n grid. The first few central Delannoy numbers (starting withn = 0) are:

1, 3, 13, 63, 321, 1683, 8989, 48639, 265729, ... (sequenceA001850 in theOEIS).

Computation

[edit]

Delannoy numbers

[edit]

Fork{\displaystyle k} diagonal (i.e. northeast) steps, there must bemk{\displaystyle m-k} steps in thex{\displaystyle x} direction andnk{\displaystyle n-k} steps in they{\displaystyle y} direction in order to reach the point(m,n){\displaystyle (m,n)}; as these steps can be performed in any order, the number of such paths is given by themultinomial coefficient(m+nkk,mk,nk)=(m+nkm)(mk){\displaystyle {\binom {m+n-k}{k,m-k,n-k}}={\binom {m+n-k}{m}}{\binom {m}{k}}}. Hence, one gets the closed-form expression

D(m,n)=k=0min(m,n)(m+nkm)(mk).{\displaystyle D(m,n)=\sum _{k=0}^{\min(m,n)}{\binom {m+n-k}{m}}{\binom {m}{k}}.}

An alternative expression is given by

D(m,n)=k=0min(m,n)(mk)(nk)2k{\displaystyle D(m,n)=\sum _{k=0}^{\min(m,n)}{\binom {m}{k}}{\binom {n}{k}}2^{k}}

or by the infinite series

D(m,n)=k=012k+1(kn)(km).{\displaystyle D(m,n)=\sum _{k=0}^{\infty }{\frac {1}{2^{k+1}}}{\binom {k}{n}}{\binom {k}{m}}.}

And also

D(m,n)=k=0nA(m,k),{\displaystyle D(m,n)=\sum _{k=0}^{n}A(m,k),}

whereA(m,k){\displaystyle A(m,k)} is given with (sequenceA266213 in theOEIS).

The basicrecurrence relation for the Delannoy numbers is easily seen to be

D(m,n)={1if m=0 or n=0D(m1,n)+D(m1,n1)+D(m,n1)otherwise{\displaystyle D(m,n)={\begin{cases}1&{\text{if }}m=0{\text{ or }}n=0\\D(m-1,n)+D(m-1,n-1)+D(m,n-1)&{\text{otherwise}}\end{cases}}}

This recurrence relation also leads directly to thegenerating function

m,n=0D(m,n)xmyn=(1xyxy)1.{\displaystyle \sum _{m,n=0}^{\infty }D(m,n)x^{m}y^{n}=(1-x-y-xy)^{-1}.}

Central Delannoy numbers

[edit]

Substitutingm=n{\displaystyle m=n} in the first closed form expression above, replacingknk{\displaystyle k\leftrightarrow n-k}, and a little algebra, gives

D(n)=k=0n(nk)(n+kk),{\displaystyle D(n)=\sum _{k=0}^{n}{\binom {n}{k}}{\binom {n+k}{k}},}

while the second expression above yields

D(n)=k=0n(nk)22k.{\displaystyle D(n)=\sum _{k=0}^{n}{\binom {n}{k}}^{2}2^{k}.}

The central Delannoy numbers satisfy also a three-term recurrence relationship among themselves,[8]

nD(n)=3(2n1)D(n1)(n1)D(n2),{\displaystyle nD(n)=3(2n-1)D(n-1)-(n-1)D(n-2),}

and have a generating function

n=0D(n)xn=(16x+x2)1/2.{\displaystyle \sum _{n=0}^{\infty }D(n)x^{n}=(1-6x+x^{2})^{-1/2}.}

The leading asymptotic behavior of the central Delannoy numbers is given by

D(n)=cαnn(1+O(n1)){\displaystyle D(n)={\frac {c\,\alpha ^{n}}{\sqrt {n}}}\,(1+O(n^{-1}))}

whereα=3+225.828{\displaystyle \alpha =3+2{\sqrt {2}}\approx 5.828}andc=(4π(324))1/20.5727{\displaystyle c=(4\pi (3{\sqrt {2}}-4))^{-1/2}\approx 0.5727}.

See also

[edit]

References

[edit]
  1. ^Banderier, Cyril; Schwer, Sylviane (2005), "Why Delannoy numbers?",Journal of Statistical Planning and Inference,135 (1):40–54,arXiv:math/0411128,doi:10.1016/j.jspi.2005.02.004,MR 2202337,S2CID 16226115
  2. ^Covington, Michael A. (2004), "The number of distinct alignments of two strings",Journal of Quantitative Linguistics,11 (3):173–182,doi:10.1080/0929617042000314921,S2CID 40549706
  3. ^Luther, Sebastian; Mertens, Stephan (2011),"Counting lattice animals in high dimensions",Journal of Statistical Mechanics: Theory and Experiment,2011 (9) P09026,arXiv:1106.1078,Bibcode:2011JSMTE..09..026L,doi:10.1088/1742-5468/2011/09/P09026,S2CID 119308823
  4. ^Breukelaar, R.; Bäck, Th. (2005), "Using a Genetic Algorithm to Evolve Behavior in Multi Dimensional Cellular Automata: Emergence of Behavior",Proceedings of the 7th Annual Conference on Genetic and Evolutionary Computation (GECCO '05), New York, NY, USA: ACM, pp. 107–114,doi:10.1145/1068009.1068024,ISBN 1-59593-010-8,S2CID 207157009
  5. ^Sulanke, Robert A. (2003),"Objects counted by the central Delannoy numbers"(PDF),Journal of Integer Sequences,6 (1): Article 03.1.5,Bibcode:2003JIntS...6...15S,MR 1971435
  6. ^Sloane, N. J. A. (ed.)."Sequence A008288 (Square array of Delannoy numbers D(i,j) (i >= 0, j >= 0) read by antidiagonals)".TheOn-Line Encyclopedia of Integer Sequences. OEIS Foundation.
  7. ^Alladi, K.;Hoggatt Jr., V. E. (1977). "On tribonacci numbers and related functions".The Fibonacci Quarterly.15 (1):42–45.doi:10.1080/00150517.1977.12430503.
  8. ^Peart, Paul; Woan, Wen-Jin (2002). "A bijective proof of the Delannoy recurrence".Congressus Numerantium.158:29–33.ISSN 0384-9864.MR 1985142.Zbl 1030.05003.

External links

[edit]
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Delannoy_number&oldid=1321323496"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp