Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Dedekind eta function

From Wikipedia, the free encyclopedia
Mathematical function
Not to be confused withWeierstrass eta function orDirichlet eta function.
Dedekindη-function in the upper half-plane

Inmathematics, theDedekind eta function, named afterRichard Dedekind, is amodular form of weight 1/2 and is a function defined on theupper half-plane ofcomplex numbers, where the imaginary part is positive. It also occurs inbosonic string theory.

Definition

[edit]

For any complex numberτ withIm(τ) > 0, letq =e2πiτ; then the eta function is defined by,

η(τ)=eπiτ12n=1(1e2nπiτ)=q124n=1(1qn).{\displaystyle \eta (\tau )=e^{\frac {\pi i\tau }{12}}\prod _{n=1}^{\infty }\left(1-e^{2n\pi i\tau }\right)=q^{\frac {1}{24}}\prod _{n=1}^{\infty }\left(1-q^{n}\right).}

Raising the eta equation to the 24th power and multiplying by(2π)12 gives

Δ(τ)=(2π)12η24(τ){\displaystyle \Delta (\tau )=(2\pi )^{12}\eta ^{24}(\tau )}

whereΔ is themodular discriminant. The presence of24 can be understood by connection with other occurrences, such as in the 24-dimensionalLeech lattice.

The eta function isholomorphic on the upper half-plane but cannot be continued analytically beyond it.

Modulus of Euler phi on the unit disc, colored so that black = 0, red = 4
The real part of the modular discriminant as a function ofq.

The eta function satisfies thefunctional equations[1]

η(τ+1)=eπi12η(τ),η(1τ)=iτη(τ).{\displaystyle {\begin{aligned}\eta (\tau +1)&=e^{\frac {\pi i}{12}}\eta (\tau ),\\\eta \left(-{\frac {1}{\tau }}\right)&={\sqrt {-i\tau }}\,\eta (\tau ).\,\end{aligned}}}

In the second equation thebranch of the square root is chosen such that = 1 whenτ =i.

More generally, supposea,b,c,d are integers withadbc = 1, so that

τaτ+bcτ+d{\displaystyle \tau \mapsto {\frac {a\tau +b}{c\tau +d}}}

is a transformation belonging to themodular group. We may assume that eitherc > 0, orc = 0 andd = 1. Then

η(aτ+bcτ+d)=ϵ(a,b,c,d)(cτ+d)12η(τ),{\displaystyle \eta \left({\frac {a\tau +b}{c\tau +d}}\right)=\epsilon (a,b,c,d)\left(c\tau +d\right)^{\frac {1}{2}}\eta (\tau ),}

where

ϵ(a,b,c,d)={ebiπ12c=0,d=1,eiπ(a+d12cs(d,c)14)c>0.{\displaystyle \epsilon (a,b,c,d)={\begin{cases}e^{\frac {bi\pi }{12}}&c=0,\,d=1,\\e^{i\pi \left({\frac {a+d}{12c}}-s(d,c)-{\frac {1}{4}}\right)}&c>0.\end{cases}}}

Heres(h,k) is theDedekind sum

s(h,k)=n=1k1nk(hnkhnk12).{\displaystyle s(h,k)=\sum _{n=1}^{k-1}{\frac {n}{k}}\left({\frac {hn}{k}}-\left\lfloor {\frac {hn}{k}}\right\rfloor -{\frac {1}{2}}\right).}

Because of these functional equations the eta function is amodular form of weight1/2 and level 1 for a certain character of order 24 of themetaplectic double cover of the modular group, and can be used to define other modular forms. In particular themodular discriminant of theWeierstrass elliptic function with

ω2=τω1{\displaystyle \omega _{2}=\tau \omega _{1}}

can be defined as

Δ(τ)=(2πω1)12η(τ)24{\displaystyle \Delta (\tau )=(2\pi \omega _{1})^{12}\eta (\tau )^{24}\,}

and is a modular form of weight 12. Some authors omit the factor of(2π)12, so that the series expansion has integral coefficients.

TheJacobi triple product implies that the eta is (up to a factor) a Jacobitheta function for special values of the arguments:[2]

η(τ)=n=1χ(n)exp(πin2τ12),{\displaystyle \eta (\tau )=\sum _{n=1}^{\infty }\chi (n)\exp \left({\frac {\pi in^{2}\tau }{12}}\right),}

whereχ(n) is "the"Dirichlet character modulo 12 withχ(±1) = 1 andχ(±5) = −1. Explicitly,[citation needed]

η(τ)=eπiτ12ϑ(τ+12;3τ).{\displaystyle \eta (\tau )=e^{\frac {\pi i\tau }{12}}\vartheta \left({\frac {\tau +1}{2}};3\tau \right).}

TheEuler function

ϕ(q)=n=1(1qn)=q124η(τ),{\displaystyle {\begin{aligned}\phi (q)&=\prod _{n=1}^{\infty }\left(1-q^{n}\right)\\&=q^{-{\frac {1}{24}}}\eta (\tau ),\end{aligned}}}

has a power series by theEuler identity:

ϕ(q)=n=(1)nq3n2n2.{\displaystyle \phi (q)=\sum _{n=-\infty }^{\infty }(-1)^{n}q^{\frac {3n^{2}-n}{2}}.}

Note that by using Euler Pentagonal number theorem forI(τ)>0{\displaystyle {\mathfrak {I}}(\tau )>0}, the eta function can be expressed as

η(τ)=n=eπine3πi(n+16)2τ.{\displaystyle \eta (\tau )=\sum _{n=-\infty }^{\infty }e^{\pi in}e^{3\pi i\left(n+{\frac {1}{6}}\right)^{2}\tau }.}

This can be proved by usingx=2πiτ{\displaystyle x=2\pi i\tau } in Euler Pentagonal number theorem with the definition of eta function.

Because the eta function is easy to compute numerically from eitherpower series, it is often helpful in computation to express other functions in terms of it when possible, and products and quotients of eta functions, called eta quotients, can be used to express a great variety of modular forms.

The picture on this page shows the modulus of the Euler function: the additional factor ofq1/24 between this and eta makes almost no visual difference whatsoever. Thus, this picture can be taken as a picture of eta as a function ofq.

Combinatorial identities

[edit]

The theory of thealgebraic characters of theaffine Lie algebras gives rise to a large class of previously unknown identities for the eta function. These identities follow from theWeyl–Kac character formula, and more specifically from the so-called "denominator identities". The characters themselves allow the construction of generalizations of theJacobi theta function which transform under themodular group; this is what leads to the identities. An example of one such new identity[3] is

η(8τ)η(16τ)=m,nZm|3n|(1)mq(2m+1)232n2{\displaystyle \eta (8\tau )\eta (16\tau )=\sum _{m,n\in \mathbb {Z} \atop m\leq |3n|}(-1)^{m}q^{(2m+1)^{2}-32n^{2}}}

whereq =e2πiτ is theq-analog or "deformation" of thehighest weight of a module.

Special values

[edit]

From the above connection with the Euler function together with the special values of the latter, it can be easily deduced that

η(i)=Γ(14)2π34η(12i)=Γ(14)278π34η(2i)=Γ(14)2118π34η(3i)=Γ(14)233(3+23)112π34η(4i)=1+24Γ(14)22916π34η(e2πi3)=eπi2438Γ(13)322π{\displaystyle {\begin{aligned}\eta (i)&={\frac {\Gamma \left({\frac {1}{4}}\right)}{2\pi ^{\frac {3}{4}}}}\\[6pt]\eta \left({\tfrac {1}{2}}i\right)&={\frac {\Gamma \left({\frac {1}{4}}\right)}{2^{\frac {7}{8}}\pi ^{\frac {3}{4}}}}\\[6pt]\eta (2i)&={\frac {\Gamma \left({\frac {1}{4}}\right)}{2^{\frac {11}{8}}\pi ^{\frac {3}{4}}}}\\[6pt]\eta (3i)&={\frac {\Gamma \left({\frac {1}{4}}\right)}{2{\sqrt[{3}]{3}}\left(3+2{\sqrt {3}}\right)^{\frac {1}{12}}\pi ^{\frac {3}{4}}}}\\[6pt]\eta (4i)&={\frac {{\sqrt[{4}]{-1+{\sqrt {2}}}}\,\Gamma \left({\frac {1}{4}}\right)}{2^{\frac {29}{16}}\pi ^{\frac {3}{4}}}}\\[6pt]\eta \left(e^{\frac {2\pi i}{3}}\right)&=e^{-{\frac {\pi i}{24}}}{\frac {{\sqrt[{8}]{3}}\,\Gamma \left({\frac {1}{3}}\right)^{\frac {3}{2}}}{2\pi }}\end{aligned}}}

Eta quotients

[edit]

Eta quotients are defined by quotients of the form

0<dNη(dτ)rd{\displaystyle \prod _{0<d\mid N}\eta (d\tau )^{r_{d}}}

whered is a non-negative integer andrd is any integer. Linear combinations of eta quotients at imaginary quadratic arguments may bealgebraic, while combinations of eta quotients may even beintegral. For example, define,

j(τ)=((η(τ)η(2τ))8+28(η(2τ)η(τ))16)3j2A(τ)=((η(τ)η(2τ))12+26(η(2τ)η(τ))12)2j3A(τ)=((η(τ)η(3τ))6+33(η(3τ)η(τ))6)2j4A(τ)=((η(τ)η(4τ))4+42(η(4τ)η(τ))4)2=(η2(2τ)η(τ)η(4τ))24{\displaystyle {\begin{aligned}j(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (2\tau )}}\right)^{8}+2^{8}\left({\frac {\eta (2\tau )}{\eta (\tau )}}\right)^{16}\right)^{3}\\[6pt]j_{2A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (2\tau )}}\right)^{12}+2^{6}\left({\frac {\eta (2\tau )}{\eta (\tau )}}\right)^{12}\right)^{2}\\[6pt]j_{3A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (3\tau )}}\right)^{6}+3^{3}\left({\frac {\eta (3\tau )}{\eta (\tau )}}\right)^{6}\right)^{2}\\[6pt]j_{4A}(\tau )&=\left(\left({\frac {\eta (\tau )}{\eta (4\tau )}}\right)^{4}+4^{2}\left({\frac {\eta (4\tau )}{\eta (\tau )}}\right)^{4}\right)^{2}=\left({\frac {\eta ^{2}(2\tau )}{\eta (\tau )\,\eta (4\tau )}}\right)^{24}\end{aligned}}}

with the 24th power of theWeber modular function𝔣(τ). Then,

j(1+1632)=6403203,eπ1636403203+743.99999999999925j2A(582)=3964,eπ583964104.00000017j3A(1+8932)=3003,eπ8933003+41.999971j4A(72)=212,eπ721224.06{\displaystyle {\begin{aligned}j\left({\frac {1+{\sqrt {-163}}}{2}}\right)&=-640320^{3},&e^{\pi {\sqrt {163}}}&\approx 640320^{3}+743.99999999999925\dots \\[6pt]j_{2A}\left({\frac {\sqrt {-58}}{2}}\right)&=396^{4},&e^{\pi {\sqrt {58}}}&\approx 396^{4}-104.00000017\dots \\[6pt]j_{3A}\left({\frac {1+{\sqrt {-{\frac {89}{3}}}}}{2}}\right)&=-300^{3},&e^{\pi {\sqrt {\frac {89}{3}}}}&\approx 300^{3}+41.999971\dots \\[6pt]j_{4A}\left({\frac {\sqrt {-7}}{2}}\right)&=2^{12},&e^{\pi {\sqrt {7}}}&\approx 2^{12}-24.06\dots \end{aligned}}}

and so on, values which appear inRamanujan–Sato series.

Eta quotients may also be a useful tool for describing bases ofmodular forms, which are notoriously difficult to compute and express directly. In 1993 Basil Gordon and Kim Hughes proved that if an eta quotientηg of the form given above, namely0<dNη(dτ)rd{\displaystyle \prod _{0<d\mid N}\eta (d\tau )^{r_{d}}} satisfies

0<dNdrd0(mod24)and0<dNNdrd0(mod24),{\displaystyle \sum _{0<d\mid N}dr_{d}\equiv 0{\pmod {24}}\quad {\text{and}}\quad \sum _{0<d\mid N}{\frac {N}{d}}r_{d}\equiv 0{\pmod {24}},}

thenηg is aweightk modular form for thecongruence subgroupΓ0(N) (up toholomorphicity) where[4]

k=120<dNrd.{\displaystyle k={\frac {1}{2}}\sum _{0<d\mid N}r_{d}.}

This result was extended in 2019 such that the converse holds for cases whenN iscoprime to 6, and it remains open that the original theorem is sharp for all integersN.[5] This also extends to state that anymodular eta quotient for any leveln congruence subgroup must also be a modular form for the groupΓ(N). While these theorems characterizemodular eta quotients, the condition of holomorphicity must be checked separately using a theorem that emerged from the work of Gérard Ligozat[6] and Yves Martin:[7]

Ifηg is an eta quotient satisfying the above conditions for the integerN andc andd are coprime integers, then the order of vanishing at the cuspc/d relative toΓ0(N) is

N240<δ|Ngcd(d,δ)2rδgcd(d,Nδ)dδ.{\displaystyle {\frac {N}{24}}\sum _{0<\delta |N}{\frac {\gcd \left(d,\delta \right)^{2}r_{\delta }}{\gcd \left(d,{\frac {N}{\delta }}\right)d\delta }}.}

These theorems provide an effective means of creating holomorphic modular eta quotients, however this may not be sufficient to construct a basis for avector space of modular forms andcusp forms. A useful theorem for limiting the number of modular eta quotients to consider states that a holomorphic weightk modular eta quotient onΓ0(N) must satisfy

0<dN|rd|pN(p+1p1)min(2,ordp(N)),{\displaystyle \sum _{0<d\mid N}|r_{d}|\leq \prod _{p\mid N}\left({\frac {p+1}{p-1}}\right)^{\min {\bigl (}2,{\text{ord}}_{p}(N){\bigr )}},}

whereordp(N) denotes the largest integerm such thatpm dividesN.[8]These results lead to several characterizations of spaces of modular forms that can be spanned by modular eta quotients.[8] Using thegraded ring structure on the ring of modular forms, we can compute bases of vector spaces of modular forms composed ofC{\displaystyle \mathbb {C} }-linear combinations of eta-quotients. For example, if we assumeN =pq is asemiprime then the following process can be used to compute an eta-quotient basis ofMk0(N)).[5]

  1. Fix a semiprimeN =pq which is coprime to 6 (that is,p,q > 3). We know that any modular eta quotient may be found using the above theorems, therefore it is reasonable to algorithmically to compute them.
  2. Compute the dimensionD ofMk0(N)). This tells us how many linearly-independent modular eta quotients we will need to compute to form a basis.
  3. Reduce the number of eta quotients to consider. For semiprimes we can reduce the number of partitions using the bound on
    0<dN|rd|{\displaystyle \sum _{0<d\mid N}|r_{d}|}

    and by noticing that the sum of the orders of vanishing at the cusps ofΓ0(N) must equal

    S:=(p+1)(q+1)6{\displaystyle S:={\frac {(p+1)(q+1)}{6}}}.[5]
  4. Find all partitions ofS into 4-tuples (there are 4 cusps ofΓ0(N)), and among these consider only the partitions which satisfy Gordon and Hughes' conditions (we can convert orders of vanishing into exponents). Each of these partitions corresponds to a unique eta quotient.
  5. Determine the minimum number of terms in theq-expansion of each eta quotient required to identify elements uniquely (this uses a result known asSturm's bound). Then use linear algebra to determine a maximal independent set among these eta quotients.
  6. Assuming that we have not already foundD linearly independent eta quotients, find an appropriate vector spaceMk0(N)) such thatk andMk0(N)) is spanned by (weakly holomorphic) eta quotients,[8] andMkk0(N)) contains an eta quotientηg.
  7. Take a modular formf with weightk that is not in the span of our computed eta quotients, and computefηg as a linear combination of eta-quotients inMk0(N)) and then divide out byηg. The result will be an expression off as a linear combination of eta quotients as desired. Repeat this until a basis is formed.

A collection of over 6300 product identities for the Dedekind Eta Function in a canonical, standardized form is available at the Wayback machine[9] of Michael Somos' website.

See also

[edit]

References

[edit]
  1. ^Siegel, C. L. (1954). "A Simple Proof ofη(−1/τ) =η(τ)τ/i".Mathematika.1: 4.doi:10.1112/S0025579300000462.
  2. ^Bump, Daniel (1998),Automorphic Forms and Representations, Cambridge University Press,ISBN 0-521-55098-X
  3. ^Fuchs, Jurgen (1992),Affine Lie Algebras and Quantum Groups, Cambridge University Press,ISBN 0-521-48412-X
  4. ^Gordon, Basil; Hughes, Kim (1993). "Multiplicative properties ofη-products. II.".A Tribute to Emil Grosswald: Number Theory and Related Analysis. Contemporary Mathematics. Vol. 143. Providence, RI: American Mathematical Society. p. 415–430.
  5. ^abcAllen, Michael; Anderson, Nicholas; Hamakiotes, Asimina; Oltsik, Ben; Swisher, Holly (2020). "Eta-quotients of prime or semiprime level and elliptic curves".Involve.13 (5):879–900.arXiv:1901.10511.doi:10.2140/involve.2020.13.879.S2CID 119620241.
  6. ^Ligozat, G. (1974).Courbes modulaires de genre 1. Publications Mathématiques d'Orsay. Vol. 75. U.E.R. Mathématique, Université Paris XI, Orsay. p. 7411.
  7. ^Martin, Yves (1996)."Multiplicativeη-quotients".Transactions of the American Mathematical Society.348 (12): 4825–4856.doi:10.1090/S0002-9947-96-01743-6.
  8. ^abcRouse, Jeremy; Webb, John J. (2015)."On spaces of modular forms spanned by eta-quotients".Advances in Mathematics.272: 200–224.arXiv:1311.1460.doi:10.1016/j.aim.2014.12.002.
  9. ^"Dedekind Eta Function Product Identities by Michael Somos". Archived fromthe original on 2019-07-09.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Dedekind_eta_function&oldid=1274033583"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp