Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Decagonal number

From Wikipedia, the free encyclopedia
Figurate number representing a decagon
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Decagonal number" – news ·newspapers ·books ·scholar ·JSTOR
(August 2025) (Learn how and when to remove this message)

Inmathematics, adecagonal number is afigurate number that extends the concept oftriangular andsquare numbers to thedecagon (a ten-sided polygon).[1] However, unlike the triangular and square numbers, the patterns involved in the construction of decagonal numbers are not rotationally symmetrical. Specifically, then-th decagonal numbers counts the dots in a pattern ofn nested decagons, all sharing a common corner, where theith decagon in the pattern has sides made ofi dots spaced one unit apart from each other. Then-th decagonal number is given by the following formula

dn=4n23n{\displaystyle d_{n}=4n^{2}-3n}.[2]

The first few decagonal numbers are:

0,1,10,27,52,85,126,175,232,297, 370, 451, 540, 637, 742, 855, 976,1105, 1242, 1387, 1540, 1701, 1870, 2047, 2232, 2425, 2626, 2835, 3052, 3277, 3510, 3751,4000, 4257, 4522, 4795, 5076, 5365, 5662, 5967, 6280, 6601, 6930, 7267, 7612, 7965, 8326 (sequenceA001107 in theOEIS).

Thenth decagonal number can also be calculated by adding the square ofn to thrice the (n−1)thpronic number or, to put it algebraically, as

Dn=n2+3(n2n){\displaystyle D_{n}=n^{2}+3\left(n^{2}-n\right)}.

Properties

[edit]
Dn=Dn1+8n7,D0=0{\displaystyle D_{n}=D_{n-1}+8n-7,D_{0}=0}
Dn=2Dn1Dn2+8,D0=0,D1=1{\displaystyle D_{n}=2D_{n-1}-D_{n-2}+8,D_{0}=0,D_{1}=1}
Dn=3Dn13Dn2+Dn3,D0=0,D1=1,D2=10{\displaystyle D_{n}=3D_{n-1}-3D_{n-2}+D_{n-3},D_{0}=0,D_{1}=1,D_{2}=10}

Sum of reciprocals

[edit]

Thesum of the reciprocals of the decagonal numbers admits a simple closed form:n=114n23n+n=11n(4n3)=ln(2)+π6.{\displaystyle \sum _{n=1}^{\infty }{\frac {1}{4n^{2}-3n}}+\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}=\ln \left(2\right)+{\frac {\pi }{6}}.}

Proof

[edit]

This derivation rests upon the method of adding a "constructive zero":n=11n(4n3)=43n=1(14n314n)=23n=1(24n324n+(14n114n2)(14n114n2)){\displaystyle {\begin{aligned}\sum _{n=1}^{\infty }{\frac {1}{n\left(4n-3\right)}}&{}={\frac {4}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {2}{4n-3}}-{\frac {2}{4n}}+\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)-\left({\frac {1}{4n-1}}-{\frac {1}{4n-2}}\right)\right)\end{aligned}}}Rearranging and considering the individual sums:=23n=1[(14n314n2+14n114n)+(14n214n)+(14n314n1)]=23n=1(14n314n2+14n114n)+13n=1(12n112n)+23n=1(12(2n1)112(2n)1)=23n=1(1)n+1n+13n=1(1)n+1n+23n=1(1)n+12n1=ln(2)+π6.{\displaystyle {\begin{aligned}&={\frac {2}{3}}\sum _{n=1}^{\infty }\left[\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-2}}-{\frac {1}{4n}}\right)+\left({\frac {1}{4n-3}}-{\frac {1}{4n-1}}\right)\right]\\&={\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{4n-3}}-{\frac {1}{4n-2}}+{\frac {1}{4n-1}}-{\frac {1}{4n}}\right)+{\frac {1}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2n-1}}-{\frac {1}{2n}}\right)+{\frac {2}{3}}\sum _{n=1}^{\infty }\left({\frac {1}{2(2n-1)-1}}-{\frac {1}{2(2n)-1}}\right)\\&={\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {1}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{n}}+{\frac {2}{3}}\sum _{n=1}^{\infty }{\frac {(-1)^{n+1}}{2n-1}}\\&=\ln \left(2\right)+{\frac {\pi }{6}}.\end{aligned}}}

References

[edit]
  1. ^"Decagonal Numbers".GeeksforGeeks. 2017-12-25. Retrieved2025-08-12.
  2. ^"C program to find Decagonal Number".GeeksforGeeks. 2017-03-06. Retrieved2025-08-12.
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Higherdimensional
non-centered
Classes ofnatural numbers
Powers and related numbers
Of the forma × 2b ± 1
Other polynomial numbers
Recursively defined numbers
Possessing a specific set of other numbers
Expressible via specific sums
2-dimensional
centered
non-centered
3-dimensional
centered
non-centered
pyramidal
4-dimensional
non-centered
Combinatorial numbers
Divisor functions
Prime omega functions
Euler's totient function
Aliquot sequences
Primorial
Otherprime factor ordivisor related numbers
Numeral system-dependent numbers
Arithmetic functions
anddynamics
Digit sum
Digit product
Coding-related
Other
P-adic numbers-related
Digit-composition related
Digit-permutation related
Divisor-related
Other
Generated via asieve
Sorting related
Graphemics related
Retrieved from "https://en.wikipedia.org/w/index.php?title=Decagonal_number&oldid=1306686202"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp