Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Davis distribution

From Wikipedia, the free encyclopedia
Probability distribution for income sizes
Davis distribution
Parametersb>0{\displaystyle b>0}scale
n>0{\displaystyle n>0}shape
μ>0{\displaystyle \mu >0}location
Supportx>μ{\displaystyle x>\mu }
PDFbn(xμ)1n(ebxμ1)Γ(n)ζ(n){\displaystyle {\frac {b^{n}{(x-\mu )}^{-1-n}}{\left(e^{\frac {b}{x-\mu }}-1\right)\Gamma (n)\zeta (n)}}}
WhereΓ(n){\displaystyle \Gamma (n)} is theGamma function andζ(n){\displaystyle \zeta (n)} is theRiemann zeta function
Mean{μ+bζ(n1)(n1)ζ(n)if n>2Indeterminateotherwise {\displaystyle {\begin{cases}\mu +{\frac {b\zeta (n-1)}{(n-1)\zeta (n)}}&{\text{if}}\ n>2\\{\text{Indeterminate}}&{\text{otherwise}}\ \end{cases}}}
Variance{b2((n2)ζ(n1)2+(n1)ζ(n2)ζ(n))(n2)(n1)2ζ(n)2if n>3Indeterminateotherwise {\displaystyle {\begin{cases}{\frac {b^{2}\left(-(n-2){\zeta (n-1)}^{2}+(n-1)\zeta (n-2)\zeta (n)\right)}{(n-2){(n-1)}^{2}{\zeta (n)}^{2}}}&{\text{if}}\ n>3\\{\text{Indeterminate}}&{\text{otherwise}}\ \end{cases}}}

Instatistics, theDavis distributions are a family ofcontinuous probability distributions. It is named afterHarold T. Davis (1892–1974), who in 1941 proposed this distribution to model income sizes. (The Theory of Econometrics and Analysis of Economic Time Series). It is a generalization of thePlanck's law of radiation fromstatistical physics.

Definition

[edit]

Theprobability density function of the Davis distribution is given by

f(x;μ,b,n)=bn(xμ)1n(ebxμ1)Γ(n)ζ(n){\displaystyle f(x;\mu ,b,n)={\frac {b^{n}{(x-\mu )}^{-1-n}}{\left(e^{\frac {b}{x-\mu }}-1\right)\Gamma (n)\zeta (n)}}}

whereΓ(n){\displaystyle \Gamma (n)} is theGamma function andζ(n){\displaystyle \zeta (n)} is theRiemann zeta function. Here μ,b, andn are parameters of the distribution, andn need not be an integer.

Background

[edit]

In an attempt to derive an expression that would represent not merely the upper tail of the distribution of income, Davis required an appropriate model with the following properties[1]

f(x)A(xμ)α1.{\displaystyle f(x)\sim A{(x-\mu )}^{-\alpha -1}\,.}

Related distributions

[edit]

Notes

[edit]
  1. ^Kleiber 2003

References

[edit]
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Davis_distribution&oldid=1294917955"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp