Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cyclopentadiene

From Wikipedia, the free encyclopedia
Cyclopentadiene
Skeletal formula of cyclopentadiene
Skeletal formula of cyclopentadiene
Spacefill model of cyclopentadiene
Spacefill model of cyclopentadiene
Ball and stick model of cyclopentadiene
Ball and stick model of cyclopentadiene
Names
Preferred IUPAC name
Cyclopenta-1,3-diene
Other names
1,3-Cyclopentadiene[1]
Pyropentylene[2]
Identifiers
3D model (JSmol)
AbbreviationsCPD, HCp
471171
ChEBI
ChemSpider
ECHA InfoCard100.008.033Edit this at Wikidata
EC Number
  • 208-835-4
1311
MeSH1,3-cyclopentadiene
RTECS number
  • GY1000000
UNII
  • InChI=1S/C5H6/c1-2-4-5-3-1/h1-4H,5H2 checkY
    Key: ZSWFCLXCOIISFI-UHFFFAOYSA-N checkY
  • InChI=1/C5H6/c1-2-4-5-3-1/h1-4H,5H2
    Key: ZSWFCLXCOIISFI-UHFFFAOYAI
  • C1C=CC=C1
Properties
C5H6
Molar mass66.103 g·mol−1
AppearanceColourless liquid
Odorirritating,terpene-like[1]
Density0.802 g/cm3
Melting point−90 °C; −130 °F; 183 K
Boiling point39 to 43 °C; 102 to 109 °F; 312 to 316 K
insoluble[1]
Vapor pressure400 mmHg (53 kPa)[1]
Acidity (pKa)16
Conjugate baseCyclopentadienyl anion
−44.5×10−6 cm3/mol
1.44 (at 20 °C)[3]
Structure
Planar[4]
0.419D[3]
Thermochemistry
115.3 J/(mol·K)
182.7 J/(mol·K)
105.9 kJ/mol[3]
Hazards
NFPA 704 (fire diamond)
Flash point25 °C (77 °F; 298 K)
640 °C (1,184 °F; 913 K)
Lethal dose or concentration (LD, LC):
14,182 ppm (rat, 2 h)
5091 ppm (mouse, 2 h)[5]
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 75 ppm (200 mg/m3)[1]
REL (Recommended)
TWA 75 ppm (200 mg/m3)[1]
IDLH (Immediate danger)
750 ppm[1]
Related compounds
Benzene
Cyclobutadiene
Cyclopentene
Related compounds
Dicyclopentadiene
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Cyclopentadiene is anorganic compound with theformula C5H6.[6] It is often abbreviatedCpH because thecyclopentadienyl anion is abbreviated Cp.

This colorless liquid has a strong andunpleasant odor. At room temperature, this cyclicdienedimerizes over the course of hours to givedicyclopentadiene via aDiels–Alder reaction. This dimer can berestored by heating to give the monomer.

The compound is mainly used for the production ofcyclopentene and its derivatives. It is popularly used as a precursor to thecyclopentadienyl anion (Cp), an importantligand incyclopentadienyl complexes inorganometallic chemistry.[7]

Production and reactions

[edit]
Cyclopentadiene monomer in an ice bath

Cyclopentadiene production is usually not distinguished fromdicyclopentadiene since they interconvert. They are obtained from coal tar (about 10–20 g/t) and bysteam cracking ofnaphtha (about 14 kg/t).[8] To obtain cyclopentadiene monomer, commercial dicyclopentadiene is cracked by heating to around 180 °C. The monomer is collected by distillation and used soon thereafter.[9] It advisable to use some form offractionating column when doing this, to remove refluxing uncracked dimer.

Sigmatropic rearrangement

[edit]

The hydrogen atoms in cyclopentadiene undergo rapid[1,5]-sigmatropic shifts. The hydride shift is, however, sufficiently slow at 0 °C to allow alkylated derivatives to be manipulated selectively.[10]

Themethoxy group ends up only on the methylene bridge, becauseDiels-Alder addition at −55 °C occurs much faster than the sigmatropic shift (excerpted fromCorey's total synthesis ofprostaglandin F)[10]

Even morefluxional are the derivatives C5H5E(CH3)3 (E =Si,Ge,Sn), wherein the heavier element migrates from carbon to carbon with a low activation barrier.

Diels–Alder reactions

[edit]

Cyclopentadiene is a highly reactivediene in theDiels–Alder reaction because minimal distortion of the diene is required to achieve the envelope geometry of the transition state compared to other dienes.[11] Famously, cyclopentadiene dimerizes. The conversion occurs in hours at room temperature, but the monomer can be stored for days at −20 °C.[8]

Deprotonation

[edit]
Main article:Cyclopentadienyl anion

The compound is unusuallyacidic (pKa = 16) for ahydrocarbon, a fact explained by the high stability of thearomatic cyclopentadienyl anion,C
5
H
5
.Deprotonation can be achieved with a variety of bases, typicallysodium hydride, sodium metal, andbutyl lithium. Salts of this anion are commercially available, includingsodium cyclopentadienide andlithium cyclopentadienide. They are used to preparecyclopentadienyl complexes.

Metallocene derivatives

[edit]
Main article:Metallocene

Metallocenes and relatedcyclopentadienyl derivatives have been heavily investigated and represent a cornerstone oforganometallic chemistry owing to their high stability. The first metallocene characterised,ferrocene, was prepared the way many other metallocenes are prepared by combining alkali metal derivatives of the form MC5H5 with dihalides of thetransition metals:[12] As typical example,nickelocene forms upon treatingnickel(II) chloride with sodium cyclopentadienide inTHF.[13]

NiCl2 + 2 NaC5H5 → Ni(C5H5)2 + 2 NaCl

Organometallic complexes that include both the cyclopentadienyl anion and cyclopentadiene itself are known, one example of which is therhodocene derivative produced from the rhodocene monomer inprotic solvents.[14]

Organic synthesis

[edit]

It was the starting material inLeo Paquette's 1982 synthesis ofdodecahedrane.[15] The first step involvedreductive dimerization of the molecule to givedihydrofulvalene, not simple addition to give dicyclopentadiene.

The start of Paquette's 1982 dodecahedrane synthesis. Note the dimerisation of cyclopentadiene in step 1 to dihydrofulvalene.

Uses

[edit]

Aside from serving as a precursor to cyclopentadienyl-based catalysts, the main commercial application of cyclopentadiene is as a precursor tocomonomers. Semi-hydrogenation givescyclopentene. Diels–Alder reaction withbutadiene givesethylidene norbornene, a comonomer in the production ofEPDM rubbers.

Derivatives

[edit]
Structure oft-Bu3C5H3, a prototypicalbulky cyclopentadiene[16]

Cyclopentadiene can substitute one or more hydrogens, forming derivatives having covalent bonds:

Most of these substituted cyclopentadienes can also formanions and joincyclopentadienyl complexes.

See also

[edit]

References

[edit]
  1. ^abcdefgNIOSH Pocket Guide to Chemical Hazards."#0170".National Institute for Occupational Safety and Health (NIOSH).
  2. ^William M. Haynes (2016).CRC Handbook of Chemistry and Physics [Physical Constants of Organic Compounds]. Vol. 97. CRC Press/Taylor and Francis. p. 276 (3-138).ISBN 978-1498754286.
  3. ^abcWilliam M. Haynes; David R. Lide; Thomas J. Bruno, eds. (2016).CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data (2016-2017, 97th ed.). Boca Raton, Florida: CRC Press.ISBN 978-1-4987-5428-6.OCLC 930681942.
  4. ^Faustov, Valery I.; Egorov, Mikhail P.; Nefedov, Oleg M.; Molin, Yuri N. (2000). "Ab initio G2 and DFT calculations on electron affinity of cyclopentadiene, silole, germole and their 2,3,4,5-tetraphenyl substituted analogs: structure, stability and EPR parameters of the radical anions".Phys. Chem. Chem. Phys.2 (19):4293–4297.Bibcode:2000PCCP....2.4293F.doi:10.1039/b005247g.
  5. ^"Cyclopentadiene".Immediately Dangerous to Life or Health Concentrations.National Institute for Occupational Safety and Health.
  6. ^Scharpen, LeRoy H.; Laurie, Victor W. (1965-10-15)."Structure of Cyclopentadiene".The Journal of Chemical Physics.43 (8):2765–2766.Bibcode:1965JChPh..43.2765S.doi:10.1063/1.1697207.ISSN 0021-9606.
  7. ^Hartwig, J. F. (2010).Organotransition Metal Chemistry: From Bonding to Catalysis. New York, NY: University Science Books.ISBN 978-1-891389-53-5.
  8. ^abHönicke, Dieter; Födisch, Ringo; Claus, Peter; Olson, Michael. "Cyclopentadiene and Cyclopentene".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a08_227.ISBN 978-3-527-30673-2.
  9. ^Moffett, Robert Bruce (1962)."Cyclopentadiene and 3-Chlorocyclopentene".Organic Syntheses;Collected Volumes, vol. 4, p. 238.
  10. ^abCorey, E. J.; Weinshenker, N. M.; Schaaf, T. K.; Huber, W. (1969). "Stereo-controlled synthesis of prostaglandins F-2a and E-2 (dl)".Journal of the American Chemical Society.91 (20):5675–5677.doi:10.1021/ja01048a062.PMID 5808505.
  11. ^Levandowski, Brian; Houk, Ken (2015). "Theoretical Analysis of Reactivity Patterns in Diels–Alder Reactions of Cyclopentadiene, Cyclohexadiene, and Cycloheptadiene with Symmetrical and Unsymmetrical Dienophiles".J. Org. Chem.80 (7):3530–3537.doi:10.1021/acs.joc.5b00174.PMID 25741891.
  12. ^Girolami, G. S.; Rauchfuss, T. B.;Angelici, R. J. (1999).Synthesis and Technique in Inorganic Chemistry. Mill Valley, CA: University Science Books.ISBN 0-935702-48-2.
  13. ^Jolly, W. L. (1970).The Synthesis and Characterization of Inorganic Compounds. Englewood Cliffs, NJ: Prentice-Hall.ISBN 0-13-879932-6.
  14. ^Kolle, U.; Grub, J. (1985). "Permethylmetallocene: 5. Reactions of Decamethylruthenium Cations".J. Organomet. Chem.289 (1):133–139.doi:10.1016/0022-328X(85)88034-7.
  15. ^Paquette, L. A.; Wyvratt, M. J. (1974). "Domino Diels–Alder reactions. I. Applications to the rapid construction of polyfused cyclopentanoid systems".J. Am. Chem. Soc.96 (14):4671–4673.Bibcode:1974JAChS..96.4671P.doi:10.1021/ja00821a052.
  16. ^Reiners, Matthis; Ehrlich, Nico; Walter, Marc D. (2018). "Synthesis of Selected Transition Metal and Main Group Compounds with Synthetic Applications".Inorganic Syntheses. Vol. 37. p. 199.doi:10.1002/9781119477822.ch8.ISBN 978-1-119-47782-2.S2CID 105376454.

External links

[edit]
Alkenes
Dienes
Trienes
Tetraenes
Even–numbered
Odd–numbered
Compounds initalics arearomatic
Salts and covalent derivatives of thecyclopentadienide ion
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cyclopentadiene&oldid=1330140980"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp