Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Copper(II) chloride

This is a good article. Click here for more information.
From Wikipedia, the free encyclopedia

Copper(II) chloride
Dihydrate
Anhydrous
Names
IUPAC name
Copper(II) chloride
Other names
Cupric chloride
Identifiers
3D model (JSmol)
8128168
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.028.373Edit this at Wikidata
EC Number
  • 231-210-2
9300
RTECS number
  • GL7000000
UNII
UN number2802
  • InChI=1S/2ClH.Cu/h2*1H;/q;;+2/p-2 checkY
    Key: ORTQZVOHEJQUHG-UHFFFAOYSA-L checkY
  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2/rCl2Cu/c1-3-2
    Key: ORTQZVOHEJQUHG-LRIOHBSEAE
  • InChI=1/2ClH.Cu/h2*1H;/q;;+2/p-2
    Key: ORTQZVOHEJQUHG-NUQVWONBAE
  • anhydrous: [Cu+2].[Cl-].[Cl-]
  • dihydrate: Cl[Cu-2](Cl)([OH2+])[OH2+]
Properties
CuCl2
Molar mass134.45 g/mol (anhydrous)
170.48 g/mol (dihydrate)
Appearancedark brown solid (anhydrous)
light blue solid (dihydrate)
Odorodorless
Density3.386 g/cm3 (anhydrous)
2.51 g/cm3 (dihydrate)
Melting point630 °C (1,166 °F; 903 K) (extrapolated)
100 °C (dehydration of dihydrate)
Boiling point993 °C (1,819 °F; 1,266 K) (anhydrous, decomposes)
70.6 g/(100 mL) (0 °C)
75.7 g/(100 mL) (25 °C)
107.9 g/(100 mL) (100 °C)
Solubilitymethanol:
68 g/(100 mL) (15 °C)


ethanol:
53 g/(100 mL) (15 °C)
soluble inacetone

+1080·10−6 cm3/mol
Structure[1][2]
monoclinic (β = 121°) (anhydrous)
orthorhombic (dihydrate)
C2/m (anhydrous)
Pbmn (dihydrate)
a = 6.85 Å (anhydrous)
7.41 Å (dihydrate),b = 3.30 Å (anhydrous)
8.09 Å (dihydrate),c = 6.70 Å (anhydrous)
3.75 Å (dihydrate)
Octahedral
Hazards
GHS labelling:
GHS05: CorrosiveGHS06: ToxicGHS07: Exclamation markGHS09: Environmental hazard
Danger
H301,H302,H312,H315,H318,H319,H335,H410,H411
P261,P264,P270,P271,P273,P280,P301+P310,P301+P312,P302+P352,P304+P340,P305+P351+P338,P310,P312,P321,P322,P330,P332+P313,P337+P313,P362,P363,P391,P403+P233,P405,P501
NFPA 704 (fire diamond)
Flash pointNon-flammable
NIOSH (US health exposure limits):
PEL (Permissible)
TWA 1 mg/m3 (as Cu)[3]
REL (Recommended)
TWA 1 mg/m3 (as Cu)[3]
IDLH (Immediate danger)
TWA 100 mg/m3 (as Cu)[3]
Safety data sheet (SDS)Fisher Scientific
Related compounds
Otheranions
Copper(II) fluoride
Copper(II) bromide
Othercations
Copper(I) chloride
Silver chloride
Gold(III) chloride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Copper(II) chloride, also known ascupric chloride, is aninorganic compound with thechemical formulaCuCl2. Themonoclinic yellowish-brownanhydrous form slowly absorbs moisture to form the orthorhombic blue-greendihydrateCuCl2·2H2O, with twowater molecules of hydration. It is industrially produced for use as aco-catalyst in theWacker process.

Both the anhydrous and the dihydrate forms occur naturally as the rare mineralstolbachite anderiochalcite, respectively.

Structure

[edit]

Anhydrous copper(II) chloride adopts a distortedcadmium iodide structure. In this structure, thecopper centers areoctahedral. Most copper(II) compounds exhibit distortions from idealizedoctahedral geometry due to theJahn-Teller effect, which in this case describes the localization of oned-electron into amolecular orbital that is stronglyantibonding with respect to a pair of chloride ligands. InCuCl2·2H2O, the copper again adopts a highly distorted octahedral geometry, the Cu(II) centers being surrounded by two water ligands and four chloride ligands, whichbridge asymmetrically to other Cu centers.[4][5]

Copper(II) chloride isparamagnetic. Of historical interest,CuCl2·2H2O was used in the firstelectron paramagnetic resonance measurements byYevgeny Zavoisky in 1944.[6][7]

Anhydrous
  Copper, Cu
  Oxygen, O
  Chlorine, Cl
  Hydrogen, H
Dihydrate
Structures of the forms of copper(II) chloride

Properties and reactions

[edit]
Aqueous solutions of copper(II) chloride. Greenish when high inCl, more blue when lower inCl.

Aqueous solutions prepared from copper(II) chloride contain a range of copper(II)complexes depending onconcentration, temperature, and the presence of additionalchloride ions. These species include the blue color of[Cu(H2O)6]2+ and the yellow or red color of the halide complexes of the formula[CuCl2+x]x.[5]

Hydrolysis

[edit]

When copper(II) chloride solutions are treated with abase, aprecipitation ofcopper(II) hydroxide occurs:[8]

CuCl2 + 2 NaOH → Cu(OH)2 + 2 NaCl

Partial hydrolysis givesdicopper chloride trihydroxide,Cu2(OH)3Cl, a popular fungicide.[8] When an aqueous solution of copper(II) chloride is left in the air and isn't stabilized by a small amount of acid, it is prone to undergo slight hydrolysis.[5]

Redox and decomposition

[edit]

Copper(II) chloride is a mildoxidant. It starts to decompose tocopper(I) chloride andchlorine gas around 400 °C (752 °F) and is completely decomposed near 1,000 °C (1,830 °F):[8][9][10][11]

2 CuCl2 → 2 CuCl + Cl2

The reportedmelting point of copper(II) chloride of 498 °C (928 °F) is a melt of a mixture of copper(I) chloride and copper(II) chloride. The true melting point of 630 °C (1,166 °F) can be extrapolated by using the melting points of the mixtures of CuCl andCuCl2.[12][13] Copper(II) chloride reacts with several metals to produce copper metal or copper(I) chloride (CuCl) with oxidation of the other metal. To convert copper(II) chloride to copper(I) chloride, it can be convenient to reduce an aqueous solution withsulfur dioxide as thereductant:[8]

2 CuCl2 + SO2 + 2 H2O → 2 CuCl + 2 HCl + H2SO4

Coordination complexes

[edit]

CuCl2 reacts with HCl or otherchloride sources to form complex ions: the red[CuCl3] (found inpotassium trichloridocuprate(II)K[CuCl3]) (it is adimer in reality,[Cu2Cl6]2−, a couple of tetrahedrons that share an edge), and the green or yellow[CuCl4]2− (found inpotassium tetrachloridocuprate(II)K2[CuCl4]).[5][14][15]

CuCl2 + Cl ⇌ [CuCl3]
CuCl2 + 2 Cl ⇌ [CuCl4]2−

Some of these complexes can be crystallized from aqueous solution, and they adopt a wide variety of structures.[14]

Copper(II) chloride also forms a variety ofcoordination complexes withligands such asammonia,pyridine andtriphenylphosphine oxide:[8][5][16]

CuCl2 + 2 C5H5N → [CuCl2(C5H5N)2] (tetragonal)
CuCl2 + 2 (C6H5)3P=O → [CuCl2((C6H5)3P=O)2] (tetrahedral)

However "soft" ligands such asphosphines (e.g.,triphenylphosphine), iodide, andcyanide as well as some tertiaryamines inducereduction to give copper(I) complexes.[5]

Preparation

[edit]

Copper(II) chloride is prepared commercially by the action ofchlorination of copper. Copper at red heat (300-400 °C) combines directly with chlorine gas, giving (molten) copper(II) chloride. The reaction is veryexothermic.[8][15]

Cu(s) + Cl2(g) → CuCl2(l)

A solution of copper(II) chloride is commercially produced by adding chlorine gas to a circulating mixture ofhydrochloric acid and copper. From this solution, the dihydrate can be produced by evaporation.[8][10]

Although copper metal itself cannot be oxidized by hydrochloric acid, copper-containing bases such as the hydroxide,oxide, orcopper(II) carbonate can react to formCuCl2 in anacid-base reaction which can subsequently be heated above 100 °C (212 °F) to produce the anhydrous derivative.[8][10]

Once prepared, a solution ofCuCl2 may be purified bycrystallization. A standard method takes the solution mixed in hot dilute hydrochloric acid, and causes the crystals to form by cooling in acalcium chloride (CaCl2) ice bath.[17][18]

There are indirect and rarely used means of using copper ions in solution to form copper(II) chloride.Electrolysis of aqueous sodium chloride with copperelectrodes produces (among other things) a blue-greenfoam that can be collected and converted to the hydrate. While this is not usually done due to the emission of toxic chlorine gas, and the prevalence of the more generalchloralkali process, the electrolysis will convert the copper metal to copper ions in solution forming the compound. Indeed, any solution of copper ions can be mixed with hydrochloric acid and made into a copper chloride by removing any other ions.[19]

Uses

[edit]

Co-catalyst in Wacker process

[edit]

A major industrial application for copper(II) chloride is as a co-catalyst withpalladium(II) chloride in theWacker process. In this process,ethene (ethylene) is converted toethanal (acetaldehyde) using water and air. During the reaction,PdCl2reduced toPd, and theCuCl2 serves to re-oxidize this back toPdCl2. Air can then oxidize the resultantCuCl back toCuCl2, completing the cycle.[20]

  1. C2H4 + PdCl2 + H2O → CH3CHO + Pd + 2 HCl
  2. Pd + 2 CuCl2 → 2 CuCl + PdCl2
  3. 4 CuCl + 4 HCl + O2 → 4 CuCl2 + 2 H2O

The overall process is:[20]

2 C2H4 + O2 → 2 CH3CHO

In organic synthesis

[edit]

Copper(II) chloride has some highly specialized applications in thesynthesis of organic compounds.[17] It affects thechlorination ofaromatic hydrocarbons—this is often performed in the presence ofaluminium oxide. It is able to chlorinate thealpha position ofcarbonyl compounds:[20][21]

Alpha chlorination of an aldehyde using CuCl2.

This reaction is performed in a polar solvent such asdimethylformamide, often in the presence oflithium chloride, which accelerates the reaction.[20]

CuCl2, in the presence ofoxygen, can also oxidizephenols. The major product can be directed to give either aquinone or a coupled product from oxidative dimerization. The latter process provides a high-yield route to1,1-binaphthol:[22]

Coupling of beta-naphthol using CuCl2.

Such compounds are intermediates in the synthesis ofBINAP and its derivatives.[20]

Copper(II) chloride dihydrate promotes the hydrolysis ofacetonides, i.e., for deprotection to regenerate diols[23] oraminoalcohols, as in this example (where TBDPS =tert-butyldiphenylsilyl):[24]

Deprotection of an acetonide using CuCl2·2H2O.

CuCl2 also catalyses thefree radical addition ofsulfonyl chlorides toalkenes; the alpha-chlorosulfone may then undergoelimination with a base to give a vinylsulfone product.[20]

Catalyst in production of chlorine

[edit]

Copper(II) chloride is used as acatalyst in a variety of processes that produce chlorine byoxychlorination. TheDeacon process takes place at about 400 to 450 °C in the presence of a copper chloride:[8]

4 HCl + O2 → 2 Cl2 + 2 H2O

Copper(II) chloride catalyzes the chlorination in the production ofvinyl chloride anddichloromethane.[8]

Copper(II) chloride is used in thecopper–chlorine cycle where it reacts with steam into copper(II) oxide dichloride and hydrogen chloride and is later recovered in the cycle from theelectrolysis of copper(I) chloride.[11]

Niche uses

[edit]

Copper(II) chloride is used inpyrotechnics as a blue/green coloring agent. In aflame test, copper chlorides, like all copper compounds, emit green-blue light.[25]

Inhumidity indicator cards (HICs), cobalt-free brown to azure (copper(II) chloride base) HICs can be found on the market.[26] In 1998, theEuropean Community classified items containing cobalt(II) chloride of 0.01 to 1%w/w as T (Toxic), with the correspondingR phrase of R49 (may cause cancer if inhaled). Consequently, new cobalt-free humidity indicator cards containing copper have been developed.[27]

Copper(II) chloride is used as amordant in the textile industry,petroleumsweetener,wood preservative, andwater cleaner.[8][28]

Natural occurrence

[edit]
Eriochalcite

Copper(II) chloride occurs naturally as the very rare anhydrous mineral tolbachite and the dihydrate eriochalcite.[29] Both are found nearfumaroles and in some copper mines.[30][31][32] Mixed oxyhydroxide-chlorides likeatacamite (Cu2(OH)3Cl) are more common, arising among Cu ore beds oxidation zones in arid climates.[33]

Safety and biological impact

[edit]

Copper(II) chloride can be toxic. Only concentrations below 1.3ppm of aqueous copper ions are allowed in drinking water by theUS Environmental Protection Agency.[34] If copper chloride is absorbed, it results in headache, diarrhea, a drop inblood pressure, and fever. Ingestion of large amounts may inducecopper poisoning,CNS disorders, andhaemolysis.[35][36]

Copper(II) chloride has been demonstrated to causechromosomal aberrations andmitotic cycle disturbances withinA. cepa (onion) cells.[37] Such cellular disturbances lead togenotoxicity. Copper(II) chloride has also been studied as a harmful environmental pollutant. Often present in irrigation-grade water, it can negatively affect water and soil microbes.[38] Specifically,denitrifying bacteria were found to be very sensitive to the presence of copper(II) chloride. At a concentration of 0.95 mg/L, copper(II) chloride was found to cause a 50% inhibition (IC50) of the metabolic activity of denitrifying microbes.[39]

See also

[edit]

References

[edit]
  1. ^A. F. Wells (1947). "The crystal structure of anhydrous cupric chloride, and the stereochemistry of the cupric atom".Journal of the Chemical Society:1670–1675.doi:10.1039/JR9470001670.
  2. ^Sydney Brownstein; Nam Fong Han; Eric Gabe; Yvon LePage (1989). "A redetermination of the crystal structure of cupric chloride dihydrate".Zeitschrift für Kristallographie.189 (1):13–15.Bibcode:1989ZK....189...13B.doi:10.1524/zkri.1989.189.1-2.13.
  3. ^abcNIOSH Pocket Guide to Chemical Hazards."#0150".National Institute for Occupational Safety and Health (NIOSH).
  4. ^Wells, A.F. (1984).Structural Inorganic Chemistry. Oxford: Clarendon Press. p. 253.ISBN 0-19-855370-6.
  5. ^abcdefGreenwood, N. N. and Earnshaw, A. (1997). Chemistry of the Elements (2nd Edn.), Oxford:Butterworth-Heinemann. p. 1183–1185ISBN 0-7506-3365-4.
  6. ^Peter Baláž (2008).Mechanochemistry in Nanoscience and Minerals Engineering. Springer. p. 167.ISBN 978-3-540-74854-0.
  7. ^Carlo Corvaja (2009).Electron paramagnetic resonance: a practitioner's toolkit. John Wiley and Sons. p. 3.ISBN 978-0-470-25882-8.
  8. ^abcdefghijkZhang, J.; Richardson, H. W. (2016). "Copper Compounds".Ullmann's Encyclopedia of Industrial Chemistry. pp. 1–31.doi:10.1002/14356007.a07_567.pub2.ISBN 978-3-527-30673-2.
  9. ^Shuiliang Zhou; Shaobo Shen; Dalong Zhao; Zhitao Zhang; Shiyu Yan (2017). "Evaporation and decomposition of eutectics of cupric chloride and sodium chloride".Journal of Thermal Analysis and Calorimetry.129 (3):1445–1452.doi:10.1007/s10973-017-6360-y.S2CID 99924382.
  10. ^abcRichardson, H. W. (2003). "Copper Compounds".Kirk-Othmer Encyclopedia of Chemical Technology.doi:10.1002/0471238961.0315161618090308.a01.pub2.ISBN 0471238961.
  11. ^abZ. Wang; G. Marin; G. F. Naterer; K. S. Gabriel (2015)."Thermodynamics and kinetics of the thermal decomposition of cupric chloride in its hydrolysis reaction"(PDF).Journal of Thermal Analysis and Calorimetry.119 (2):815–823.doi:10.1007/s10973-014-3929-6.S2CID 93668361.
  12. ^Wilhelm Biltz; Werner Fischer (1927). "Beiträge zur systematischen Verwandtschaftslehre. XLIII. Über das System Cupro-/Cuprichlorid".Zeitschrift für anorganische und allgemeine Chemie (in German).166 (1):290–298.doi:10.1002/zaac.19271660126.
  13. ^A. G. Massey; N. R. Thompson; B. F. G. Johnson (1973).The Chemistry of Copper, Silver and Gold. Elsevier Science. p. 42.ISBN 9780080188607.
  14. ^abNaida S. Gill; F. B. Taylor (1967).Tetrahalo Complexes of Dipositive Metals in the First Transition Series. Inorganic Syntheses. Vol. 9. pp. 136–142.doi:10.1002/9780470132401.ch37.ISBN 978-0-470-13240-1.
  15. ^abH. Wayne Richardson (1997).Handbook of Copper Compounds and Applications. CRC Press. pp. 24–68.ISBN 9781482277463.
  16. ^W. Libus; S. K. Hoffmann; M. Kluczkowski; H. Twardowska (1980). "Solution equilibriums of copper(II) chloride in pyridine and pyridine-diluent mixtures".Inorganic Chemistry.19 (6):1625–1632.doi:10.1021/ic50208a039.
  17. ^abS. H. Bertz, E. H. Fairchild, inHandbook of Reagents for Organic Synthesis, Volume 1: Reagents, Auxiliaries and Catalysts for C-C Bond Formation, (R. M. Coates, S. E. Denmark, eds.), pp. 220–223, Wiley, New York, 1738.
  18. ^W. L. F. Armarego; Christina Li Lin Chai (2009-05-22).Purification of Laboratory Chemicals(Google Books excerpt) (6th ed.). Butterworth-Heinemann. p. 461.ISBN 978-1-85617-567-8.
  19. ^J. Ji; W. C. Cooper (1990). "Electrochemical preparation of cuprous oxide powder: Part I. Basic electrochemistry".Journal of Applied Electrochemistry.20 (5):818–825.doi:10.1007/BF01094312.S2CID 95677720.
  20. ^abcdefNicholas D. P. Cosford; Pauline Pei Li; Thierry Ollevier (2015). "Copper(II) Chloride".Encyclopedia of Reagents for Organic Synthesis. pp. 1–8.doi:10.1002/047084289X.rc214.pub3.ISBN 9780470842898.
  21. ^C. E. Castro; E. J. Gaughan; D. C. Owsley (1965). "Cupric Halide Halogenations".Journal of Organic Chemistry.30 (2): 587.doi:10.1021/jo01013a069.
  22. ^J. Brussee; J. L. G. Groenendijk; J. M. Koppele; A. C. A. Jansen (1985). "On the mechanism of the formation of s(−)-(1, 1'-binaphthalene)-2,2'-diol via copper(II)amine complexes".Tetrahedron.41 (16): 3313.doi:10.1016/S0040-4020(01)96682-7.
  23. ^Chandrasekhar, M.; Kusum L. Chandra; Vinod K. Singh (2003). "Total Synthesis of (+)-Boronolide, (+)-Deacetylboronolide, and (+)-Dideacetylboronolide".Journal of Organic Chemistry.68 (10):4039–4045.doi:10.1021/jo0269058.PMID 12737588.
  24. ^Krishna, Palakodety Radha; G. Dayaker (2007). "A stereoselective total synthesis of (−)-andrachcinidine via an olefin cross-metathesis protocol".Tetrahedron Letters.48 (41). Elsevier:7279–7282.doi:10.1016/j.tetlet.2007.08.053.
  25. ^Clark, Jim (August 2018)."Flame Tests".chemguide.co.uk.Archived from the original on November 27, 2020. RetrievedJanuary 10, 2021.
  26. ^US 20150300958 A1, Evan Koon Lun Yuuji Hajime, "Adjustable colorimetric moisture indicators", published 2015 
  27. ^"Cobalt dichloride".European Chemicals Agency. ECHA. Retrieved30 May 2023.
  28. ^B.H. Patel (2011). "11 - Natural dyes". In Clark, M. (ed.).Handbook of Textile and Industrial Dyeing. Woodhead Publishing. pp. 412–413.ISBN 9781845696955. Retrieved2 June 2023.
  29. ^Marlene C. Morris, Howard F. McMurdie, Eloise H. Evans, Boris Paretzkin, Harry S. Parker, and Nicolas C. Panagiotopoulos (1981)Copper chloride hydrate (eriochalcite), inStandard X-ray Diffraction Powder Patterns National Bureau of Standards, Monograph 25, Section 18; page 33.
  30. ^"Tolbachite".mindat.org. Retrieved24 August 2023.
  31. ^"Eriochalcite".mindat.org. Retrieved24 August 2023.
  32. ^"The New IMA List of Minerals".Università degli studi di Trieste. International Mineralogical Association. Retrieved24 August 2023.
  33. ^"Atacamite".mindat.org. Retrieved30 May 2023.
  34. ^"National Primary Drinking Water Regulations".EPA. 30 November 2015. Retrieved29 May 2023.
  35. ^"Copper: Health Information Summary"(PDF).Environmental Fact Sheet. New Hampshire Department of Environmental Services. 2005. ARD-EHP-9. Archived fromthe original(PDF) on 20 January 2017.
  36. ^"Safety Data Sheet".Sigma Aldrich. Retrieved30 June 2023.
  37. ^Macar, Tuğçe Kalefetoğlu (2020)."Resveratrol ameliorates the physiological, biochemical, cytogenetic, and anatomical toxicities induced by copper (II) chloride exposure in Allium cepa L.".Environmental Science and Pollution Research.27 (1):657–667.doi:10.1007/s11356-019-06920-2.PMID 31808086.S2CID 208649491.
  38. ^Shiyab, Safwan (2018)."Phytoaccumulation of copper from irrigation water and its effect on the internal structure of lettuce".Agriculture.8 (2): 29.doi:10.3390/agriculture8020029.
  39. ^Ochoa-Herrera, Valeria (2011)."Toxicity of copper (II) ions to microorganisms in biological wastewater treatment systems".Science of the Total Environment.412 (1):380–385.Bibcode:2011ScTEn.412..380O.doi:10.1016/j.scitotenv.2011.09.072.PMID 22030247.

Further reading

[edit]

External links

[edit]
Wikimedia Commons has media related toCopper(II) chloride.
Cu(0,I)
Cu(I)
Cu(I,II)
Cu(II)
Cu(III)
Cu(IV)
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2
Retrieved from "https://en.wikipedia.org/w/index.php?title=Copper(II)_chloride&oldid=1319622374"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp