Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Conjugate transpose

From Wikipedia, the free encyclopedia
Complex matrix A* obtained from a matrix A by transposing it and conjugating each entry
"Adjoint matrix" redirects here. For the transpose of cofactor, seeAdjugate matrix.

Inmathematics, theconjugate transpose, also known as theHermitian transpose, of anm×n{\displaystyle m\times n}complexmatrixA{\displaystyle \mathbf {A} } is ann×m{\displaystyle n\times m} matrix obtained bytransposingA{\displaystyle \mathbf {A} } and applyingcomplex conjugation to each entry (the complex conjugate ofa+ib{\displaystyle a+ib} beingaib{\displaystyle a-ib}, for real numbersa{\displaystyle a} andb{\displaystyle b}). There are several notations, such asAH{\displaystyle \mathbf {A} ^{\mathrm {H} }} orA{\displaystyle \mathbf {A} ^{*}},[1]A{\displaystyle \mathbf {A} '},[2] or (often in physics)A{\displaystyle \mathbf {A} ^{\dagger }}.

Forreal matrices, the conjugate transpose is just the transpose,AH=AT{\displaystyle \mathbf {A} ^{\mathrm {H} }=\mathbf {A} ^{\operatorname {T} }}.

Definition

[edit]

The conjugate transpose of anm×n{\displaystyle m\times n} matrixA{\displaystyle \mathbf {A} } is formally defined by

(AH)ij=Aji¯{\displaystyle \left(\mathbf {A} ^{\mathrm {H} }\right)_{ij}={\overline {\mathbf {A} _{ji}}}}Eq.1

where the subscriptij{\displaystyle ij} denotes the(i,j){\displaystyle (i,j)}-th entry (matrix element), for1in{\displaystyle 1\leq i\leq n} and1jm{\displaystyle 1\leq j\leq m}, and the overbar denotes a scalar complex conjugate.

This definition can also be written as

AH=(A¯)T=AT¯{\displaystyle \mathbf {A} ^{\mathrm {H} }=\left({\overline {\mathbf {A} }}\right)^{\operatorname {T} }={\overline {\mathbf {A} ^{\operatorname {T} }}}}

whereAT{\displaystyle \mathbf {A} ^{\operatorname {T} }} denotes the transpose andA¯{\displaystyle {\overline {\mathbf {A} }}} denotes the matrix with complex conjugated entries.

Other names for the conjugate transpose of a matrix areHermitian transpose,Hermitian conjugate,adjoint matrix ortransjugate. The conjugate transpose of a matrixA{\displaystyle \mathbf {A} } can be denoted by any of these symbols:

In some contexts,A{\displaystyle \mathbf {A} ^{*}} denotes the matrix with only complex conjugated entries and no transposition.

Example

[edit]

Suppose we want to calculate the conjugate transpose of the following matrixA{\displaystyle \mathbf {A} }.

A=[12i51+ii42i]{\displaystyle \mathbf {A} ={\begin{bmatrix}1&-2-i&5\\1+i&i&4-2i\end{bmatrix}}}

We first transpose the matrix:

AT=[11+i2ii542i]{\displaystyle \mathbf {A} ^{\operatorname {T} }={\begin{bmatrix}1&1+i\\-2-i&i\\5&4-2i\end{bmatrix}}}

Then we conjugate every entry of the matrix:

AH=[11i2+ii54+2i]{\displaystyle \mathbf {A} ^{\mathrm {H} }={\begin{bmatrix}1&1-i\\-2+i&-i\\5&4+2i\end{bmatrix}}}

Basic remarks

[edit]

A square matrixA{\displaystyle \mathbf {A} } with entriesaij{\displaystyle a_{ij}} is called

Even ifA{\displaystyle \mathbf {A} } is not square, the two matricesAHA{\displaystyle \mathbf {A} ^{\mathrm {H} }\mathbf {A} } andAAH{\displaystyle \mathbf {A} \mathbf {A} ^{\mathrm {H} }} are both Hermitian and in factpositive semi-definite matrices.

The conjugate transpose "adjoint" matrixAH{\displaystyle \mathbf {A} ^{\mathrm {H} }} should not be confused with theadjugate,adj(A){\displaystyle \operatorname {adj} (\mathbf {A} )}, which is also sometimes calledadjoint.

The conjugate transpose can be motivated by noting that complex numbers can be usefully represented by2×2{\displaystyle 2\times 2} real matrices, obeyingmatrix addition and multiplication:a+ib[abba].{\displaystyle a+ib\equiv {\begin{bmatrix}a&-b\\b&a\end{bmatrix}}.}

That is, denoting eachcomplex numberz{\displaystyle z} by thereal2×2{\displaystyle 2\times 2} matrix of the linear transformation on theArgand diagram (viewed as thereal vector spaceR2{\displaystyle \mathbb {R} ^{2}}), affected by complexz{\displaystyle z}-multiplication onC{\displaystyle \mathbb {C} }.

Thus, anm×n{\displaystyle m\times n} matrix of complex numbers could be well represented by a2m×2n{\displaystyle 2m\times 2n} matrix of real numbers. The conjugate transpose, therefore, arises very naturally as the result of simply transposing such a matrix—when viewed back again as ann×m{\displaystyle n\times m} matrix made up of complex numbers.

For an explanation of the notation used here, we begin by representing complex numberseiθ{\displaystyle e^{i\theta }} as therotation matrix, that is,eiθ=(cosθsinθsinθcosθ)=cosθ(1001)+sinθ(0110).{\displaystyle e^{i\theta }={\begin{pmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{pmatrix}}=\cos \theta {\begin{pmatrix}1&0\\0&1\end{pmatrix}}+\sin \theta {\begin{pmatrix}0&-1\\1&0\end{pmatrix}}.}Sinceeiθ=cosθ+isinθ{\displaystyle e^{i\theta }=\cos \theta +i\sin \theta }, we are led to the matrix representations of the unit numbers as1=(1001),i=(0110).{\displaystyle 1={\begin{pmatrix}1&0\\0&1\end{pmatrix}},\quad i={\begin{pmatrix}0&-1\\1&0\end{pmatrix}}.}

A general complex numberz=x+iy{\displaystyle z=x+iy} is then represented asz=(xyyx).{\displaystyle z={\begin{pmatrix}x&-y\\y&x\end{pmatrix}}.} Thecomplex conjugate operation (that sendsa+bi{\displaystyle a+bi} toabi{\displaystyle a-bi} for reala,b{\displaystyle a,b}) is encoded as the matrix transpose.[3]

Properties

[edit]

Generalizations

[edit]

The last property given above shows that if one viewsA{\displaystyle \mathbf {A} } as alinear transformation fromHilbert spaceCn{\displaystyle \mathbb {C} ^{n}} toCm,{\displaystyle \mathbb {C} ^{m},} then the matrixAH{\displaystyle \mathbf {A} ^{\mathrm {H} }} corresponds to theadjoint operator ofA{\displaystyle \mathbf {A} }. The concept of adjoint operators between Hilbert spaces can thus be seen as a generalization of the conjugate transpose of matrices with respect to an orthonormal basis.

Another generalization is available: supposeA{\displaystyle A} is a linear map from a complexvector spaceV{\displaystyle V} to another,W{\displaystyle W}, then thecomplex conjugate linear map as well as thetransposed linear map are defined, and we may thus take the conjugate transpose ofA{\displaystyle A} to be the complex conjugate of the transpose ofA{\displaystyle A}. It maps the conjugatedual ofW{\displaystyle W} to the conjugate dual ofV{\displaystyle V}.

See also

[edit]

References

[edit]
  1. ^abWeisstein, Eric W."Conjugate Transpose".mathworld.wolfram.com. Retrieved2020-09-08.
  2. ^H. W. Turnbull, A. C. Aitken,"An Introduction to the Theory of Canonical Matrices,"1932.
  3. ^Chasnov, Jeffrey R. (4 February 2022). "1.6: Matrix Representation of Complex Numbers".Applied Linear Algebra and Differential Equations. LibreTexts.

External links

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Conjugate_transpose&oldid=1305103123"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp