Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Computational complexity of mathematical operations

From Wikipedia, the free encyclopedia
Algorithmic runtime requirements for common math procedures
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Computational complexity of mathematical operations" – news ·newspapers ·books ·scholar ·JSTOR
(April 2015) (Learn how and when to remove this message)
This article needs editing tocomply with Wikipedia'sManual of Style. In particular, it has problems withMOS:FORMULA - avoid mixing<math>...</math> and{{math}} in the same expression. Please helpimprove the content.(July 2025) (Learn how and when to remove this message)
Graphs of functions commonly used in the analysis of algorithms, showing the number of operationsN{\displaystyle N} versus input sizen{\displaystyle n} for each function

The following tables list thecomputational complexity of variousalgorithms for commonmathematical operations.

Here, complexity refers to thetime complexity of performing computations on amultitape Turing machine.[1] Seebig O notation for an explanation of the notation used.

Note: Due to the variety of multiplication algorithms,M(n){\displaystyle M(n)} below stands in for the complexity of the chosen multiplication algorithm.

Arithmetic functions

[edit]

This table lists the complexity of mathematical operations on integers.

OperationInputOutputAlgorithmComplexity
AdditionTwon{\displaystyle n}-digit numbersOnen+1{\displaystyle n+1}-digit numberSchoolbook addition with carryΘ(n){\displaystyle \Theta (n)}
SubtractionTwon{\displaystyle n}-digit numbersOnen{\displaystyle n}-digit numberSchoolbook subtraction with borrowΘ(n){\displaystyle \Theta (n)}
MultiplicationTwon{\displaystyle n}-digit numbers
One2n{\displaystyle 2n}-digit numberSchoolbook long multiplicationO(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Karatsuba algorithmO(n1.585){\displaystyle O{\mathord {\left(n^{1.585}\right)}}}
3-wayToom–Cook multiplicationO(n1.465){\displaystyle O{\mathord {\left(n^{1.465}\right)}}}
k{\displaystyle k}-way Toom–Cook multiplicationO(nlog(2k1)logk){\displaystyle O{\mathord {\left(n^{\frac {\log(2k-1)}{\log k}}\right)}}}
Mixed-level Toom–Cook (Knuth 4.3.3-T)[2]O(n22lognlogn){\displaystyle O{\mathord {\left(n\,2^{\sqrt {2\log n}}\,\log n\right)}}}
Schönhage–Strassen algorithmO(nlognloglogn){\displaystyle O{\mathord {\left(n\log n\log \log n\right)}}}
Harvey-Hoeven algorithm[3][4]O(nlogn){\displaystyle O(n\log n)}
DivisionTwon{\displaystyle n}-digit numbersOnen{\displaystyle n}-digit numberSchoolbook long divisionO(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Burnikel–Ziegler Divide-and-Conquer Division[5]O(M(n)logn){\displaystyle O(M(n)\log n)}
Newton–Raphson divisionO(M(n)){\displaystyle O(M(n))}
Square rootOnen{\displaystyle n}-digit numberOnen/2{\displaystyle n/2}-digit numberNewton's methodO(M(n)){\displaystyle O(M(n))}
Modular exponentiationTwon{\displaystyle n}-digit integers and ak{\displaystyle k}-bit exponentOnen{\displaystyle n}-digit integerRepeated multiplication and reductionO(M(n)2k){\displaystyle O{\mathord {\left(M(n)\,2^{k}\right)}}}
Exponentiation by squaringO(M(n)k){\displaystyle O(M(n)\,k)}
Exponentiation withMontgomery reductionO(M(n)k){\displaystyle O(M(n)\,k)}

On stronger computational models, specifically apointer machine and consequently also aunit-cost random-access machine it is possible to multiply twon-bit numbers in timeO(n).[6]

Algebraic functions

[edit]

Here we consider operations over polynomials andn denotes their degree; for the coefficients we use aunit-cost model, ignoring the number of bits in a number. In practice this means that we assume them to be machine integers. For this sectionM(n){\displaystyle M(n)} indicates the time needed for multiplying two polynomials of degree at mostn{\displaystyle n}.[7]: 242 

OperationInputOutputAlgorithmComplexity
Polynomial evaluationOne polynomial of degreen{\displaystyle n} with integer coefficientsOne numberDirect evaluationΘ(n){\displaystyle \Theta (n)}
Horner's methodΘ(n){\displaystyle \Theta (n)}
Polynomial multipoint evaluationOne polynomial of degree less thann{\displaystyle n} with integer coefficients andn{\displaystyle n} numbers as evaluation pointsn{\displaystyle n} numbersDirect evaluationΘ(n2){\displaystyle \Theta (n^{2})}
Fast multipoint evaluation[7]: 295 O(M(n)logn){\displaystyle O(M(n)\log n)}
Polynomial gcd (overZ[x]{\displaystyle \mathbb {Z} [x]} orF[x]{\displaystyle F[x]})Two polynomials of degreen{\displaystyle n} with integer coefficientsOne polynomial of degree at mostn{\displaystyle n}Euclidean algorithmO(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Fast Euclidean algorithm[7]: 318  (Lehmer[7]: 324 )O(M(n)logn){\displaystyle O(M(n)\log n)}

Special functions

[edit]

Many of the methods in this section are given in Borwein & Borwein.[8]

Elementary functions

[edit]

Theelementary functions are constructed by composing arithmetic operations, theexponential function (exp{\displaystyle \exp }), thenatural logarithm (log{\displaystyle \log }),trigonometric functions (sin,cos{\displaystyle \sin ,\cos }), and their inverses. The complexity of an elementary function is equivalent to that of its inverse, since all elementary functions areanalytic and hence invertible by means of Newton's method. In particular, if eitherexp{\displaystyle \exp } orlog{\displaystyle \log } in the complex domain can be computed with some complexity, then that complexity is attainable for all other elementary functions.

Below, the sizen{\displaystyle n} refers to the number of digits of precision at which the function is to be evaluated.

AlgorithmApplicabilityComplexity
Taylor series; repeated argument reduction (e.g.exp(2x)=[exp(x)]2{\displaystyle \exp(2x)=[\exp(x)]^{2}}) and direct summationexp,log,sin,cos,arctan{\displaystyle \exp ,\log ,\sin ,\cos ,\arctan }O(M(n)n1/2){\displaystyle O{\mathord {\left(M(n)n^{1/2}\right)}}}
Taylor series;FFT-based accelerationexp,log,sin,cos,arctan{\displaystyle \exp ,\log ,\sin ,\cos ,\arctan }O(M(n)n1/3(logn)2){\displaystyle O{\mathord {\left(M(n)n^{1/3}(\log n)^{2}\right)}}}
Taylor series;binary splitting +bit-burst algorithm[9]exp,log,sin,cos,arctan{\displaystyle \exp ,\log ,\sin ,\cos ,\arctan }O(M(n)(logn)2){\displaystyle O{\mathord {\left(M(n)(\log n)^{2}\right)}}}
Arithmetic–geometric mean iteration[10]exp,log,sin,cos,arctan{\displaystyle \exp ,\log ,\sin ,\cos ,\arctan }O(M(n)logn){\displaystyle O(M(n)\log n)}

It is not known whetherO(M(n)logn){\displaystyle O(M(n)\log n)} is the optimal complexity for elementary functions. The best known lower bound is the trivial boundΩ{\displaystyle \Omega }(M(n)){\displaystyle (M(n))}.

Non-elementary functions

[edit]
FunctionInputAlgorithmComplexity
Gamma functionIntegern{\displaystyle n}Series approximation of theincomplete gamma functionO(M(n)n1/2(logn)2){\displaystyle O{\mathord {\left(M(n)n^{1/2}(\log n)^{2}\right)}}}
Fixed rational numberHypergeometric seriesO(M(n)(logn)2){\displaystyle O{\mathord {\left(M(n)(\log n)^{2}\right)}}}
m/24{\displaystyle m/24}, form{\displaystyle m} integer.Arithmetic-geometric mean iterationO(M(n)logn){\displaystyle O(M(n)\log n)}
Hypergeometric functionpFq{\displaystyle {}_{p}\!F_{q}}n{\displaystyle n}-digit number(As described in Borwein & Borwein)O(M(n)n1/2(logn)2){\displaystyle O{\mathord {\left(M(n)n^{1/2}(\log n)^{2}\right)}}}
Fixed rational numberHypergeometric seriesO(M(n)(logn)2){\displaystyle O{\mathord {\left(M(n)(\log n)^{2}\right)}}}

Mathematical constants

[edit]

This table gives the complexity of computing approximations to the given constants ton{\displaystyle n} correct digits.

ConstantAlgorithmComplexity
Golden ratio,ϕ{\displaystyle \phi }Newton's methodO(M(n)){\displaystyle O(M(n))}
Square root of 2,2{\displaystyle {\sqrt {2}}}Newton's methodO(M(n)){\displaystyle O(M(n))}
Euler's number,e{\displaystyle e}Binary splitting of the Taylor series for the exponential functionO(M(n)logn){\displaystyle O(M(n)\log n)}
Newton inversion of the natural logarithmO(M(n)logn){\displaystyle O(M(n)\log n)}
Pi,π{\displaystyle \pi }Binary splitting of the arctan series inMachin's formulaO(M(n)(logn)2){\displaystyle O{\mathord {\left(M(n)(\log n)^{2}\right)}}}[11]
Gauss–Legendre algorithmO(M(n)logn){\displaystyle O(M(n)\log n)}[11]
Euler's constant,γ{\displaystyle \gamma }Sweeney's method (approximation in terms of theexponential integral)O(M(n)(logn)2){\displaystyle O{\mathord {\left(M(n)(\log n)^{2}\right)}}}

Number theory

[edit]

Algorithms fornumber theoretical calculations are studied incomputational number theory.

OperationInputOutputAlgorithmComplexity
Greatest common divisorTwon{\displaystyle n}-digit integersOne integer with at mostn{\displaystyle n} digitsEuclidean algorithmO(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Binary GCD algorithmO(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Left/rightk-ary binary GCD algorithm[12]O(n2logn){\displaystyle O{\mathord {\left({\frac {n^{2}}{\log n}}\right)}}}
Stehlé–Zimmermann algorithm[13]O(M(n)logn){\displaystyle O(M(n)\log n)}
Schönhage controlled Euclidean descent algorithm[14]O(M(n)logn){\displaystyle O(M(n)\log n)}
Jacobi symbolTwon{\displaystyle n}-digit integers0{\displaystyle 0},1{\displaystyle -1} or1{\displaystyle 1}Schönhage controlled Euclidean descent algorithm[15]O(M(n)logn){\displaystyle O(M(n)\log n)}
Stehlé–Zimmermann algorithm[16]O(M(n)logn){\displaystyle O(M(n)\log n)}
FactorialA positive integer less thanm{\displaystyle m}OneO(mlogm){\displaystyle O(m\log m)}-digit integerBottom-up multiplicationO(M(m2)logm){\displaystyle O{\mathord {\left(M\left(m^{2}\right)\log m\right)}}}
Binary splittingO(M(mlogm)logm){\displaystyle O(M(m\log m)\log m)}
Exponentiation of the prime factors ofm{\displaystyle m}O(M(mlogm)loglogm){\displaystyle O(M(m\log m)\log \log m)},[17]
O(M(mlogm)){\displaystyle O(M(m\log m))}[1]
Primality testAn{\displaystyle n}-digit integerTrue or falseAKS primality testO(n6+o(1)){\displaystyle O{\mathord {\left(n^{6+o(1)}\right)}}}[18][19]
O(n3){\displaystyle O(n^{3})}, assumingAgrawal's conjecture
Elliptic curve primality provingO(n4+ε){\displaystyle O{\mathord {\left(n^{4+\varepsilon }\right)}}}heuristically[20]
Baillie–PSW primality testO(n2+ε){\displaystyle O{\mathord {\left(n^{2+\varepsilon }\right)}}}[21][22]
Miller–Rabin primality testO(kn2+ε){\displaystyle O{\mathord {\left(kn^{2+\varepsilon }\right)}}}[23]
Solovay–Strassen primality testO(kn2+ε){\displaystyle O{\mathord {\left(kn^{2+\varepsilon }\right)}}}[23]
Integer factorizationAb{\displaystyle b}-bit input integerA set of factorsGeneral number field sieveO((1+ε)b){\displaystyle O{\mathord {\left((1+\varepsilon )^{b}\right)}}}[nb 1]
Shor's algorithmO(M(b)b){\displaystyle O(M(b)b)}, on aquantum computer

Matrix algebra

[edit]
Main article:Computational complexity of matrix multiplication

The following complexity figures assume that arithmetic with individual elements has complexityO(1), as is the case with fixed-precisionfloating-point arithmetic or operations on afinite field.

OperationInputOutputAlgorithmComplexity
Matrix multiplicationTwon×n{\displaystyle n\times n} matricesOnen×n{\displaystyle n\times n} matrixSchoolbook matrix multiplicationO(n3){\displaystyle O(n^{3})}
Strassen algorithmO(n2.807){\displaystyle O{\mathord {\left(n^{2.807}\right)}}}
Coppersmith–Winograd algorithm (galactic algorithm)O(n2.376){\displaystyle O{\mathord {\left(n^{2.376}\right)}}}
Optimized CW-like algorithms[24][25][26][27] (galactic algorithms)O(nψ=2.3728596){\displaystyle O{\mathord {\left(n^{\psi =2.3728596}\right)}}}
Onen×m{\displaystyle n\times m} matrix, and
onem×p{\displaystyle m\times p} matrix
Onen×p{\displaystyle n\times p} matrixSchoolbook matrix multiplicationO(nmp){\displaystyle O(nmp)}
Onen×nk{\displaystyle n\times \left\lceil n^{k}\right\rceil } matrix, and
onenk×n{\displaystyle \left\lceil n^{k}\right\rceil \times n} matrix, for somek0{\displaystyle k\geq 0}
Onen×n{\displaystyle n\times n} matrixAlgorithms given in[28]O(nω(k)+ϵ){\displaystyle O(n^{\omega (k)+\epsilon })}, where upper bounds onω(k){\displaystyle \omega (k)} are given in[28]
Matrix inversionOnen×n{\displaystyle n\times n} matrixOnen×n{\displaystyle n\times n} matrixGauss–Jordan eliminationO(n3){\displaystyle O{\mathord {\left(n^{3}\right)}}}
Strassen algorithmO(n2.807){\displaystyle O{\mathord {\left(n^{2.807}\right)}}}
Coppersmith–Winograd algorithmO(n2.376){\displaystyle O{\mathord {\left(n^{2.376}\right)}}}
Optimized CW-like algorithmsO(nψ){\displaystyle O{\mathord {\left(n^{\psi }\right)}}}
Singular value decompositionOnem×n{\displaystyle m\times n} matrixOnem×m{\displaystyle m\times m} matrix,
onem×n{\displaystyle m\times n} matrix, &
onen×n{\displaystyle n\times n} matrix
Bidiagonalization and QR algorithmO(m2n){\displaystyle O{\mathord {\left(m^{2}n\right)}}}
(mn{\displaystyle m\geq n})
Onem×n{\displaystyle m\times n} matrix,
onen×n{\displaystyle n\times n} matrix, &
onen×n{\displaystyle n\times n} matrix
Bidiagonalization and QR algorithmO(mn2){\displaystyle O{\mathord {\left(mn^{2}\right)}}}
(mn{\displaystyle m\leq n})
QR decompositionOnem×n{\displaystyle m\times n} matrixOnem×n{\displaystyle m\times n} matrix, &
onen×n{\displaystyle n\times n} matrix
Algorithms in[29]O(mn1+14ω){\displaystyle O{\mathord {\left(mn^{1+{\frac {1}{4-\omega }}}\right)}}}
(mn{\displaystyle m\geq n})
DeterminantOnen×n{\displaystyle n\times n} matrixOne numberLaplace expansionO(n!){\displaystyle O(n!)}
Division-free algorithm[30]O(n4){\displaystyle O{\mathord {\left(n^{4}\right)}}}

O(n2.697263){\displaystyle O{\mathord {\left(n^{2.697263}\right)}}}[31]

LU decompositionO(n3){\displaystyle O(n^{3})}
Bareiss algorithmO(n3){\displaystyle O{\mathord {\left(n^{3}\right)}}}
Fast matrix multiplication[32]O(nψ){\displaystyle O{\mathord {\left(n^{\psi }\right)}}}
Back substitutionTriangular matrixn{\displaystyle n} solutionsBack substitution[33]O(n2){\displaystyle O{\mathord {\left(n^{2}\right)}}}
Characteristic polynomialOnen×n{\displaystyle n\times n} matrixOne degree-n{\displaystyle n} polynomialFaddeev-LeVerrier algorithmO(nψ+1){\displaystyle O(n^{\psi +1})}
Samuelson-Berkowitz algorithmO(nψ+1){\displaystyle O(n^{\psi +1})} (smaller constant factor)
Preparata-Sarwate algorithm[34][35]O(nψ+1/2+n3){\displaystyle O(n^{\psi +1/2}+n^{3})}

In 2005,Henry Cohn,Robert Kleinberg,Balázs Szegedy, andChris Umans showed that either of two different conjectures would imply that the exponent of matrix multiplication is 2.[36]

Transforms

[edit]

Algorithms for computingtransforms of functions (particularlyintegral transforms) are widely used in all areas of mathematics, particularlyanalysis andsignal processing.

OperationInputOutputAlgorithmComplexity
Discrete Fourier transformFinite data sequence of sizen{\displaystyle n}Set of complex numbersSchoolbookO(n2){\displaystyle O(n^{2})}
Fast Fourier transformO(nlogn){\displaystyle O(n\log n)}

Notes

[edit]
  1. ^This form of sub-exponential time is valid for allε>0{\displaystyle \varepsilon >0}. A more precise form of the complexity can be given asO(exp649b(logb)23).{\displaystyle O{\mathord {\left(\exp {\sqrt[{3}]{{\frac {64}{9}}b(\log b)^{2}}}\right)}}.}

References

[edit]
  1. ^abSchönhage, A.; Grotefeld, A.F.W.; Vetter, E. (1994).Fast Algorithms—A Multitape Turing Machine Implementation. BI Wissenschafts-Verlag.ISBN 978-3-411-16891-0.OCLC 897602049.
  2. ^Knuth 1997
  3. ^Harvey, D.; Van Der Hoeven, J. (2021)."Integer multiplication in time O (n log n)"(PDF).Annals of Mathematics.193 (2):563–617.doi:10.4007/annals.2021.193.2.4.S2CID 109934776.
  4. ^Klarreich, Erica (December 2019). "Multiplication hits the speed limit".Commun. ACM.63 (1):11–13.doi:10.1145/3371387.S2CID 209450552.
  5. ^Burnikel, Christoph; Ziegler, Joachim (1998).Fast Recursive Division. Forschungsberichte des Max-Planck-Instituts für Informatik. Saarbrücken: MPI Informatik Bibliothek & Dokumentation.OCLC 246319574. MPII-98-1-022.
  6. ^Schönhage, Arnold (1980). "Storage Modification Machines".SIAM Journal on Computing.9 (3):490–508.doi:10.1137/0209036.
  7. ^abcdvon zur Gathen, J.; Gerhard, J. (2013).Modern Computer Algebra (3rd ed.). Cambridge University Press.ISBN 9781139856065.
  8. ^Borwein, J.; Borwein, P. (1987).Pi and the AGM: A Study in Analytic Number Theory and Computational Complexity. Wiley.ISBN 978-0-471-83138-9.OCLC 755165897.
  9. ^Chudnovsky, David; Chudnovsky, Gregory (1988). "Approximations and complex multiplication according to Ramanujan".Ramanujan revisited: Proceedings of the Centenary Conference. Academic Press. pp. 375–472.ISBN 978-0-01-205856-5.
  10. ^Brent, Richard P. (2014) [1975]."Multiple-precision zero-finding methods and the complexity of elementary function evaluation". In Traub, J.F. (ed.).Analytic Computational Complexity. Elsevier. pp. 151–176.arXiv:1004.3412.ISBN 978-1-4832-5789-1.
  11. ^abRichard P. Brent (2020),The Borwein Brothers, Pi and the AGM, Springer Proceedings in Mathematics & Statistics, vol. 313,arXiv:1802.07558,doi:10.1007/978-3-030-36568-4,ISBN 978-3-030-36567-7,S2CID 214742997
  12. ^Sorenson, J. (1994). "Two Fast GCD Algorithms".Journal of Algorithms.16 (1):110–144.doi:10.1006/jagm.1994.1006.
  13. ^Crandall, R.; Pomerance, C. (2005)."Algorithm 9.4.7 (Stehlé-Zimmerman binary-recursive-gcd)".Prime Numbers – A Computational Perspective (2nd ed.). Springer. pp. 471–3.ISBN 978-0-387-28979-3.
  14. ^Möller N (2008)."On Schönhage's algorithm and subquadratic integer gcd computation"(PDF).Mathematics of Computation.77 (261):589–607.Bibcode:2008MaCom..77..589M.doi:10.1090/S0025-5718-07-02017-0.
  15. ^Bernstein, D.J."Faster Algorithms to Find Non-squares Modulo Worst-case Integers".
  16. ^Brent, Richard P.; Zimmermann, Paul (2010)."AnO(M(n)logn){\displaystyle O(M(n)\log n)} algorithm for the Jacobi symbol".International Algorithmic Number Theory Symposium. Springer. pp. 83–95.arXiv:1004.2091.doi:10.1007/978-3-642-14518-6_10.ISBN 978-3-642-14518-6.S2CID 7632655.
  17. ^Borwein, P. (1985). "On the complexity of calculating factorials".Journal of Algorithms.6 (3):376–380.doi:10.1016/0196-6774(85)90006-9.
  18. ^Lenstra jr., H.W.;Pomerance, Carl (2019)."Primality testing with Gaussian periods"(PDF).Journal of the European Mathematical Society.21 (4):1229–69.doi:10.4171/JEMS/861.hdl:21.11116/0000-0005-717D-0.
  19. ^Tao, Terence (2010)."1.11 The AKS primality test".An epsilon of room, II: Pages from year three of a mathematical blog. Graduate Studies in Mathematics. Vol. 117. American Mathematical Society. pp. 82–86.doi:10.1090/gsm/117.ISBN 978-0-8218-5280-4.MR 2780010.
  20. ^Morain, F. (2007). "Implementing the asymptotically fast version of the elliptic curve primality proving algorithm".Mathematics of Computation.76 (257):493–505.arXiv:math/0502097.Bibcode:2007MaCom..76..493M.doi:10.1090/S0025-5718-06-01890-4.MR 2261033.S2CID 133193.
  21. ^Pomerance, Carl;Selfridge, John L.;Wagstaff, Jr., Samuel S. (July 1980)."The pseudoprimes to 25·109"(PDF).Mathematics of Computation.35 (151):1003–26.doi:10.1090/S0025-5718-1980-0572872-7.JSTOR 2006210.
  22. ^Baillie, Robert;Wagstaff, Jr., Samuel S. (October 1980)."Lucas Pseudoprimes"(PDF).Mathematics of Computation.35 (152):1391–1417.doi:10.1090/S0025-5718-1980-0583518-6.JSTOR 2006406.MR 0583518.
  23. ^abMonier, Louis (1980)."Evaluation and comparison of two efficient probabilistic primality testing algorithms".Theoretical Computer Science.12 (1):97–108.doi:10.1016/0304-3975(80)90007-9.MR 0582244.
  24. ^Alman, Josh; Williams, Virginia Vassilevska (2020), "A Refined Laser Method and Faster Matrix Multiplication",32nd Annual ACM-SIAM Symposium on Discrete Algorithms (SODA 2021), pp. 522–539,arXiv:2010.05846,doi:10.1137/1.9781611976465.32,ISBN 978-1-61197-646-5,S2CID 222290442
  25. ^Davie, A.M.; Stothers, A.J. (2013), "Improved bound for complexity of matrix multiplication",Proceedings of the Royal Society of Edinburgh,143A (2):351–370,doi:10.1017/S0308210511001648,S2CID 113401430
  26. ^Vassilevska Williams, Virginia (2014),Breaking the Coppersmith-Winograd barrier: Multiplying matrices in O(n2.373) time
  27. ^Le Gall, François (2014), "Powers of tensors and fast matrix multiplication",Proceedings of the 39th International Symposium on Symbolic and Algebraic Computation — ISSAC '14, p. 23,arXiv:1401.7714,Bibcode:2014arXiv1401.7714L,doi:10.1145/2608628.2627493,ISBN 9781450325011,S2CID 353236
  28. ^abLe Gall, François; Urrutia, Floren (2018). "Improved Rectangular Matrix Multiplication using Powers of the Coppersmith-Winograd Tensor". In Czumaj, Artur (ed.).Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. Society for Industrial and Applied Mathematics.doi:10.1137/1.9781611975031.67.ISBN 978-1-61197-503-1.S2CID 33396059.
  29. ^Knight, Philip A. (May 1995)."Fast rectangular matrix multiplication and QR decomposition".Linear Algebra and Its Applications.221:69–81.doi:10.1016/0024-3795(93)00230-w.ISSN 0024-3795.
  30. ^Rote, G. (2001)."Division-free algorithms for the determinant and the pfaffian: algebraic and combinatorial approaches"(PDF).Computational discrete mathematics. Springer. pp. 119–135.ISBN 3-540-45506-X.
  31. ^Kaltofen, Erich; Villard, Gilles (2005)."On the complexity of computing determinants".Computational Complexity.13 (3–4):91–130.doi:10.1007/s00037-004-0185-3.
  32. ^Aho, Alfred V.;Hopcroft, John E.;Ullman, Jeffrey D. (1974). "Theorem 6.6".The Design and Analysis of Computer Algorithms. Addison-Wesley. p. 241.ISBN 978-0-201-00029-0.
  33. ^Fraleigh, J.B.; Beauregard, R.A. (1987).Linear Algebra (3rd ed.). Addison-Wesley. p. 95.ISBN 978-0-201-15459-7.
  34. ^Preparata, F.P.; Sarwate, D.V. (April 1978)."An improved parallel processor bound in fast matrix inversion".Information Processing Letters.7 (3):148–150.doi:10.1016/0020-0190(78)90079-0.
  35. ^Galil, Zvi; Pan, Victor (January 16, 1989)."Parallel evaluation of the determinant and of the inverse of a matrix".Information Processing Letters.30 (1):148–150.doi:10.1016/0020-0190(89)90173-7., in which theO(n3){\displaystyle O(n^{3})} term is reduced
  36. ^Cohn, Henry; Kleinberg, Robert; Szegedy, Balazs; Umans, Chris (2005). "Group-theoretic Algorithms for Matrix Multiplication".Proceedings of the 46th Annual Symposium on Foundations of Computer Science. IEEE. pp. 379–388.arXiv:math.GR/0511460.doi:10.1109/SFCS.2005.39.ISBN 0-7695-2468-0.S2CID 6429088.

Further reading

[edit]
Retrieved from "https://en.wikipedia.org/w/index.php?title=Computational_complexity_of_mathematical_operations&oldid=1317930063"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp