Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Compound Poisson distribution

From Wikipedia, the free encyclopedia
Aspect of probability theory

Inprobability theory, acompound Poisson distribution is theprobability distribution of the sum of a number ofindependent identically-distributed random variables, where the number of terms to be added is itself aPoisson-distributed variable. The result can be either acontinuous or adiscrete distribution.

Definition

[edit]

Suppose that

NPoisson(λ),{\displaystyle N\sim \operatorname {Poisson} (\lambda ),}

i.e.,N is arandom variable whose distribution is aPoisson distribution withexpected value λ, and that

X1,X2,X3,{\displaystyle X_{1},X_{2},X_{3},\dots }

are identically distributed random variables that are mutually independent and also independent ofN. Then the probability distribution of the sum ofN{\displaystyle N} i.i.d. random variables

Y=n=1NXn{\displaystyle Y=\sum _{n=1}^{N}X_{n}}

is a compound Poisson distribution.

In the caseN = 0, then this is a sum of 0 terms, so the value ofY is 0. Hence the conditional distribution ofY given thatN = 0 is adegenerate distribution.

The compound Poisson distribution is obtained by marginalising the joint distribution of (Y,N) overN, and this joint distribution can be obtained by combining the conditional distributionY | N with the marginal distribution ofN.

Properties

[edit]

Theexpected value and thevariance of the compound distribution can be derived in a simple way fromlaw of total expectation and thelaw of total variance. Thus

E(Y)=E[E(YN)]=E[NE(X)]=E(N)E(X),{\displaystyle \operatorname {E} (Y)=\operatorname {E} \left[\operatorname {E} (Y\mid N)\right]=\operatorname {E} \left[N\operatorname {E} (X)\right]=\operatorname {E} (N)\operatorname {E} (X),}
Var(Y)=E[Var(YN)]+Var[E(YN)]=E[NVar(X)]+Var[NE(X)],=E(N)Var(X)+(E(X))2Var(N).{\displaystyle {\begin{aligned}\operatorname {Var} (Y)&=\operatorname {E} \left[\operatorname {Var} (Y\mid N)\right]+\operatorname {Var} \left[\operatorname {E} (Y\mid N)\right]=\operatorname {E} \left[N\operatorname {Var} (X)\right]+\operatorname {Var} \left[N\operatorname {E} (X)\right],\\[6pt]&=\operatorname {E} (N)\operatorname {Var} (X)+\left(\operatorname {E} (X)\right)^{2}\operatorname {Var} (N).\end{aligned}}}

Then, since E(N) = Var(N) ifN is Poisson-distributed, these formulae can be reduced to

E(Y)=E(N)E(X)=λE(X),{\displaystyle \operatorname {E} (Y)=\operatorname {E} (N)\operatorname {E} (X)=\lambda \operatorname {E} (X),}
Var(Y)=E(N)(Var(X)+(E(X))2)=E(N)E(X2)=λE(X2).{\displaystyle \operatorname {Var} (Y)=\operatorname {E} (N)(\operatorname {Var} (X)+(\operatorname {E} (X))^{2})=\operatorname {E} (N){\operatorname {E} (X^{2})}=\lambda {\operatorname {E} (X^{2})}.}

The probability distribution ofY can be determined in terms ofcharacteristic functions:

φY(t)=E(eitY)=E((E(eitXN))N)=E((φX(t))N),{\displaystyle \varphi _{Y}(t)=\operatorname {E} (e^{itY})=\operatorname {E} \left(\left(\operatorname {E} (e^{itX}\mid N)\right)^{N}\right)=\operatorname {E} \left((\varphi _{X}(t))^{N}\right),\,}

and hence, using theprobability-generating function of the Poisson distribution, we have

φY(t)=eλ(φX(t)1).{\displaystyle \varphi _{Y}(t)={\textrm {e}}^{\lambda (\varphi _{X}(t)-1)}.\,}

An alternative approach is viacumulant generating functions:

KY(t)=lnE[etY]=lnE[E[etYN]]=lnE[eNKX(t)]=KN(KX(t)).{\displaystyle K_{Y}(t)=\ln \operatorname {E} [e^{tY}]=\ln \operatorname {E} [\operatorname {E} [e^{tY}\mid N]]=\ln \operatorname {E} [e^{NK_{X}(t)}]=K_{N}(K_{X}(t)).\,}

Via thelaw of total cumulance it can be shown that, if the mean of the Poisson distributionλ = 1, thecumulants ofY are the same as themoments ofX1.[citation needed]

Everyinfinitely divisible probability distribution is a limit of compound Poisson distributions.[1] And compound Poisson distributions is infinitely divisible by the definition.

Discrete compound Poisson distribution

[edit]

WhenX1,X2,X3,{\displaystyle X_{1},X_{2},X_{3},\dots } are positive integer-valued i.i.d random variables withP(X1=k)=αk, (k=1,2,){\displaystyle P(X_{1}=k)=\alpha _{k},\ (k=1,2,\ldots )}, then this compound Poisson distribution is nameddiscrete compound Poisson distribution[2][3][4] (or stuttering-Poisson distribution[5]) . We say that the discrete random variableY{\displaystyle Y} satisfyingprobability generating function characterization

PY(z)=i=0P(Y=i)zi=exp(k=1αkλ(zk1)),(|z|1){\displaystyle P_{Y}(z)=\sum \limits _{i=0}^{\infty }P(Y=i)z^{i}=\exp \left(\sum \limits _{k=1}^{\infty }\alpha _{k}\lambda (z^{k}-1)\right),\quad (|z|\leq 1)}

has a discrete compound Poisson(DCP) distribution with parameters(α1λ,α2λ,)R{\displaystyle (\alpha _{1}\lambda ,\alpha _{2}\lambda ,\ldots )\in \mathbb {R} ^{\infty }} (wherei=1αi=1{\textstyle \sum _{i=1}^{\infty }\alpha _{i}=1}, withαi0,λ>0{\textstyle \alpha _{i}\geq 0,\lambda >0}), which is denoted by

XDCP(λα1,λα2,){\displaystyle X\sim {\text{DCP}}(\lambda {\alpha _{1}},\lambda {\alpha _{2}},\ldots )}

Moreover, ifXDCP(λα1,,λαr){\displaystyle X\sim {\operatorname {DCP} }(\lambda {\alpha _{1}},\ldots ,\lambda {\alpha _{r}})}, we sayX{\displaystyle X} has a discrete compound Poisson distribution of orderr{\displaystyle r} . Whenr=1,2{\displaystyle r=1,2}, DCP becomesPoisson distribution andHermite distribution, respectively. Whenr=3,4{\displaystyle r=3,4}, DCP becomes triple stuttering-Poisson distribution and quadruple stuttering-Poisson distribution, respectively.[6] Other special cases include: shiftgeometric distribution,negative binomial distribution,Geometric Poisson distribution,Neyman type A distribution, Luria–Delbrück distribution inLuria–Delbrück experiment. For more special case of DCP, see the reviews paper[7] and references therein.

Feller's characterization of the compound Poisson distribution states that a non-negative integer valued r.v.X{\displaystyle X} isinfinitely divisible if and only if its distribution is a discrete compound Poisson distribution.[8] Thenegative binomial distribution is discreteinfinitely divisible, i.e., ifX has a negative binomial distribution, then for any positive integern, there exist discrete i.i.d. random variablesX1, ..., Xn whose sum has the same distribution thatX has. The shiftgeometric distribution is discrete compound Poisson distribution since it is a trivial case ofnegative binomial distribution.

This distribution can model batch arrivals (such as in abulk queue[5][9]). The discrete compound Poisson distribution is also widely used inactuarial science for modelling the distribution of the total claim amount.[3]

When someαk{\displaystyle \alpha _{k}} are negative, it is the discrete pseudo compound Poisson distribution.[3] We define that any discrete random variableY{\displaystyle Y} satisfyingprobability generating function characterization

GY(z)=i=0P(Y=i)zi=exp(k=1αkλ(zk1)),(|z|1){\displaystyle G_{Y}(z)=\sum \limits _{i=0}^{\infty }P(Y=i)z^{i}=\exp \left(\sum \limits _{k=1}^{\infty }\alpha _{k}\lambda (z^{k}-1)\right),\quad (|z|\leq 1)}

has a discrete pseudo compound Poisson distribution with parameters(λ1,λ2,)=:(α1λ,α2λ,)R{\displaystyle (\lambda _{1},\lambda _{2},\ldots )=:(\alpha _{1}\lambda ,\alpha _{2}\lambda ,\ldots )\in \mathbb {R} ^{\infty }} wherei=1αi=1{\textstyle \sum _{i=1}^{\infty }{\alpha _{i}}=1} andi=1|αi|<{\textstyle \sum _{i=1}^{\infty }{\left|{\alpha _{i}}\right|}<\infty }, withαiR,λ>0{\displaystyle {\alpha _{i}}\in \mathbb {R} ,\lambda >0}.

Compound Poisson Gamma distribution

[edit]

IfX has agamma distribution, of which theexponential distribution is a special case, then the conditional distribution ofY | N is again a gamma distribution. The marginal distribution ofY is aTweedie distribution with variance power 1 < p < 2 (proof via comparison ofcharacteristic function).[10] To be more explicit, if

NPoisson(λ),{\displaystyle N\sim \operatorname {Poisson} (\lambda ),}

and

XiΓ(α,β){\displaystyle X_{i}\sim \operatorname {\Gamma } (\alpha ,\beta )}

i.i.d., then the distribution of

Y=i=1NXi{\displaystyle Y=\sum _{i=1}^{N}X_{i}}

is a reproductiveexponential dispersion modelED(μ,σ2){\displaystyle ED(\mu ,\sigma ^{2})} with

E[Y]=λαβ=:μ,Var[Y]=λα(1+α)β2=:σ2μp.{\displaystyle {\begin{aligned}\operatorname {E} [Y]&=\lambda {\frac {\alpha }{\beta }}=:\mu ,\\[4pt]\operatorname {Var} [Y]&=\lambda {\frac {\alpha (1+\alpha )}{\beta ^{2}}}=:\sigma ^{2}\mu ^{p}.\end{aligned}}}

The mapping of parameters Tweedie parameterμ,σ2,p{\displaystyle \mu ,\sigma ^{2},p} to the Poisson and Gamma parametersλ,α,β{\displaystyle \lambda ,\alpha ,\beta } is the following:

λ=μ2p(2p)σ2,α=2pp1,β=μ1p(p1)σ2.{\displaystyle {\begin{aligned}\lambda &={\frac {\mu ^{2-p}}{(2-p)\sigma ^{2}}},\\[4pt]\alpha &={\frac {2-p}{p-1}},\\[4pt]\beta &={\frac {\mu ^{1-p}}{(p-1)\sigma ^{2}}}.\end{aligned}}}

Compound Poisson processes

[edit]
Main article:Compound Poisson process

Acompound Poisson process with rateλ>0{\displaystyle \lambda >0} and jump size distributionG is a continuous-timestochastic process{Y(t):t0}{\displaystyle \{\,Y(t):t\geq 0\,\}} given by

Y(t)=i=1N(t)Di,{\displaystyle Y(t)=\sum _{i=1}^{N(t)}D_{i},}

where the sum is by convention equal to zero as long asN(t) = 0. Here,{N(t):t0}{\displaystyle \{\,N(t):t\geq 0\,\}} is aPoisson process with rateλ{\displaystyle \lambda }, and{Di:i1}{\displaystyle \{\,D_{i}:i\geq 1\,\}} are independent and identically distributed random variables, with distribution functionG, which are also independent of{N(t):t0}.{\displaystyle \{\,N(t):t\geq 0\,\}.\,}[11]

For the discrete version of compound Poisson process, it can be used insurvival analysis for the frailty models.[12]

Applications

[edit]

A compound Poisson distribution, in which the summands have anexponential distribution, was used by Revfeim to model the distribution of the total rainfall in a day, where each day contains a Poisson-distributed number of events each of which provides an amount of rainfall which has an exponential distribution.[13] Thompson applied the same model to monthly total rainfalls.[14]

There have been applications toinsurance claims[15][16] andx-ray computed tomography.[17][18][19]

See also

[edit]

References

[edit]
  1. ^Lukacs, E. (1970).Characteristic functions. London: Griffin.ISBN 0-85264-170-2.
  2. ^Johnson, N.L.,Kemp, A.W., and Kotz, S. (2005) Univariate Discrete Distributions, 3rd Edition, Wiley,ISBN 978-0-471-27246-5.
  3. ^abcHuiming, Zhang; Yunxiao Liu; Bo Li (2014). "Notes on discrete compound Poisson model with applications to risk theory".Insurance: Mathematics and Economics.59:325–336.doi:10.1016/j.insmatheco.2014.09.012.
  4. ^Huiming, Zhang; Bo Li (2016). "Characterizations of discrete compound Poisson distributions".Communications in Statistics - Theory and Methods.45 (22):6789–6802.doi:10.1080/03610926.2014.901375.S2CID 125475756.
  5. ^abKemp, C. D. (1967). ""Stuttering – Poisson" distributions".Journal of the Statistical and Social Enquiry of Ireland.21 (5):151–157.hdl:2262/6987.
  6. ^Patel, Y. C. (1976). Estimation of the parameters of the triple and quadruple stuttering-Poisson distributions. Technometrics, 18(1), 67-73.
  7. ^Wimmer, G., Altmann, G. (1996). The multiple Poisson distribution, its characteristics and a variety of forms. Biometrical journal, 38(8), 995-1011.
  8. ^Feller, W. (1968).An Introduction to Probability Theory and its Applications. Vol. I (3rd ed.). New York: Wiley.
  9. ^Adelson, R. M. (1966). "Compound Poisson Distributions".Journal of the Operational Research Society.17 (1):73–75.doi:10.1057/jors.1966.8.
  10. ^Jørgensen, Bent (1997).The theory of dispersion models. Chapman & Hall.ISBN 978-0412997112.
  11. ^S. M. Ross (2007).Introduction to Probability Models (ninth ed.). Boston: Academic Press.ISBN 978-0-12-598062-3.
  12. ^Ata, N.; Özel, G. (2013). "Survival functions for the frailty models based on the discrete compound Poisson process".Journal of Statistical Computation and Simulation.83 (11):2105–2116.doi:10.1080/00949655.2012.679943.S2CID 119851120.
  13. ^Revfeim, K. J. A. (1984). "An initial model of the relationship between rainfall events and daily rainfalls".Journal of Hydrology.75 (1–4):357–364.Bibcode:1984JHyd...75..357R.doi:10.1016/0022-1694(84)90059-3.
  14. ^Thompson, C. S. (1984). "Homogeneity analysis of a rainfall series: an application of the use of a realistic rainfall model".Journal of Climatology.4 (6):609–619.Bibcode:1984IJCli...4..609T.doi:10.1002/joc.3370040605.
  15. ^Jørgensen, Bent; Paes De Souza, Marta C. (January 1994). "Fitting Tweedie's compound poisson model to insurance claims data".Scandinavian Actuarial Journal.1994 (1):69–93.doi:10.1080/03461238.1994.10413930.
  16. ^Smyth, Gordon K.; Jørgensen, Bent (29 August 2014)."Fitting Tweedie's Compound Poisson Model to Insurance Claims Data: Dispersion Modelling".ASTIN Bulletin.32 (1):143–157.doi:10.2143/AST.32.1.1020.
  17. ^Whiting, Bruce R. (3 May 2002). Antonuk, Larry E.; Yaffe, Martin J. (eds.). "Signal statistics in x-ray computed tomography".Medical Imaging 2002: Physics of Medical Imaging.4682. International Society for Optics and Photonics:53–60.Bibcode:2002SPIE.4682...53W.doi:10.1117/12.465601.S2CID 116487704.
  18. ^Elbakri, Idris A.; Fessler, Jeffrey A. (16 May 2003). Sonka, Milan; Fitzpatrick, J. Michael (eds.). "Efficient and accurate likelihood for iterative image reconstruction in x-ray computed tomography".Medical Imaging 2003: Image Processing.5032. SPIE:1839–1850.Bibcode:2003SPIE.5032.1839E.CiteSeerX 10.1.1.419.3752.doi:10.1117/12.480302.S2CID 12215253.
  19. ^Whiting, Bruce R.; Massoumzadeh, Parinaz; Earl, Orville A.; O'Sullivan, Joseph A.; Snyder, Donald L.; Williamson, Jeffrey F. (24 August 2006). "Properties of preprocessed sinogram data in x-ray computed tomography".Medical Physics.33 (9):3290–3303.Bibcode:2006MedPh..33.3290W.doi:10.1118/1.2230762.PMID 17022224.
Discrete
univariate
with finite
support
with infinite
support
Continuous
univariate
supported on a
bounded interval
supported on a
semi-infinite
interval
supported
on the whole
real line
with support
whose type varies
Mixed
univariate
continuous-
discrete
Multivariate
(joint)
Directional
Degenerate
andsingular
Degenerate
Dirac delta function
Singular
Cantor
Families
Retrieved from "https://en.wikipedia.org/w/index.php?title=Compound_Poisson_distribution&oldid=1287525771"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp