Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Complex conjugate

From Wikipedia, the free encyclopedia
Fundamental operation on complex numbers
Geometric representation (Argand diagram) ofz{\displaystyle z} and its conjugatez¯{\displaystyle {\overline {z}}} in the complex plane. The complex conjugate is found byreflectingz{\displaystyle z} across the real axis.

Inmathematics, thecomplex conjugate of acomplex number is the number with an equalreal part and animaginary part equal inmagnitude but opposite insign. That is, ifa{\displaystyle a} andb{\displaystyle b} are real numbers, then the complex conjugate ofa+bi{\displaystyle a+bi} isabi.{\displaystyle a-bi.} The complex conjugate ofz{\displaystyle z} is often denoted asz¯{\displaystyle {\overline {z}}} orz{\displaystyle z^{*}}.

Inpolar form, ifr{\displaystyle r} andφ{\displaystyle \varphi } are real numbers then the conjugate ofreiφ{\displaystyle re^{i\varphi }} isreiφ.{\displaystyle re^{-i\varphi }.} This can be shown usingEuler's formula.

The product of a complex number and its conjugate is a real number:a2+b2{\displaystyle a^{2}+b^{2}} (or r2{\displaystyle r^{2}} inpolar coordinates).

If a root of aunivariate polynomial with real coefficients is complex, then itscomplex conjugate is also a root.

Notation

[edit]

The complex conjugate of a complex numberz{\displaystyle z} is written asz¯{\displaystyle {\overline {z}}} orz.{\displaystyle z^{*}.} The first notation, avinculum, avoids confusion with the notation for theconjugate transpose of amatrix, which can be thought of as a generalization of the complex conjugate. The second is preferred inphysics, wheredagger () is used for the conjugate transpose, as well as electrical engineering andcomputer engineering, where bar notation can be confused for thelogical negation ("NOT")Boolean algebra symbol, while the bar notation is more common inpure mathematics.

If a complex number isrepresented as a2×2{\displaystyle 2\times 2} matrix, the notations are identical, and the complex conjugate corresponds to thematrix transpose, which is a flip along the diagonal.[1]

Properties

[edit]

The following properties apply for all complex numbersz{\displaystyle z} andw,{\displaystyle w,} unless stated otherwise, and can be proved by writingz{\displaystyle z} andw{\displaystyle w} in the forma+bi.{\displaystyle a+bi.}

For any two complex numbers, conjugation isdistributive over addition, subtraction, multiplication and division:[2]z+w¯=z¯+w¯,zw¯=z¯w¯,zw¯=z¯w¯,and(zw)¯=z¯w¯,if w0.{\displaystyle {\begin{aligned}{\overline {z+w}}&={\overline {z}}+{\overline {w}},\\{\overline {z-w}}&={\overline {z}}-{\overline {w}},\\{\overline {zw}}&={\overline {z}}\;{\overline {w}},\quad {\text{and}}\\{\overline {\left({\frac {z}{w}}\right)}}&={\frac {\overline {z}}{\overline {w}}},\quad {\text{if }}w\neq 0.\end{aligned}}}

A complex number is equal to its complex conjugate if its imaginary part is zero, that is, if the number is real. In other words, real numbers are the onlyfixed points of conjugation.

Conjugation does not change the modulus of a complex number:|z¯|=|z|.{\displaystyle \left|{\overline {z}}\right|=|z|.}

Conjugation is aninvolution, that is, the conjugate of the conjugate of a complex numberz{\displaystyle z} isz.{\displaystyle z.} In symbols,z¯¯=z.{\displaystyle {\overline {\overline {z}}}=z.}[2]

The product of a complex number with its conjugate is equal to the square of the number's modulus:zz¯=|z|2.{\displaystyle z{\overline {z}}={\left|z\right|}^{2}.} This allows easy computation of themultiplicative inverse of a complex number given in rectangular coordinates:z1=z¯|z|2, for all z0.{\displaystyle z^{-1}={\frac {\overline {z}}{{\left|z\right|}^{2}}},\quad {\text{ for all }}z\neq 0.}

Conjugation iscommutative under composition with exponentiation to integer powers, with the exponential function, and with the natural logarithm for nonzero arguments:zn¯=(z¯)n, for all nZ{\displaystyle {\overline {z^{n}}}=\left({\overline {z}}\right)^{n},\quad {\text{ for all }}n\in \mathbb {Z} }[note 1]exp(z¯)=exp(z)¯{\displaystyle \exp \left({\overline {z}}\right)={\overline {\exp(z)}}}ln(z¯)=ln(z)¯ if z is not zero or a negative real number {\displaystyle \ln \left({\overline {z}}\right)={\overline {\ln(z)}}{\text{ if }}z{\text{ is not zero or a negative real number }}}

Ifp{\displaystyle p} is apolynomial withreal coefficients andp(z)=0,{\displaystyle p(z)=0,} thenp(z¯)=0{\displaystyle p\left({\overline {z}}\right)=0} as well. Thus, non-real roots of real polynomials occur in complex conjugate pairs (seeComplex conjugate root theorem).

In general, ifφ{\displaystyle \varphi } is aholomorphic function whose restriction to the real numbers is real-valued, andφ(z){\displaystyle \varphi (z)} andφ(z¯){\displaystyle \varphi ({\overline {z}})} are defined, thenφ(z¯)=φ(z)¯.{\displaystyle \varphi \left({\overline {z}}\right)={\overline {\varphi (z)}}.\,\!}

The mapσ(z)=z¯{\displaystyle \sigma (z)={\overline {z}}} fromC{\displaystyle \mathbb {C} } toC{\displaystyle \mathbb {C} } is ahomeomorphism (where the topology onC{\displaystyle \mathbb {C} } is taken to be the standard topology) andantilinear, if one considersC{\displaystyle \mathbb {C} } as a complexvector space over itself. Even though it appears to be awell-behaved function, it is notholomorphic; it reverses orientation whereas holomorphic functions locally preserve orientation. It isbijective and compatible with the arithmetical operations, and hence is afieldautomorphism. As it keeps the real numbers fixed, it is an element of theGalois group of thefield extensionC/R.{\displaystyle \mathbb {C} /\mathbb {R} .} This Galois group has only two elements:σ{\displaystyle \sigma } and the identity onC.{\displaystyle \mathbb {C} .} Thus the only two field automorphisms ofC{\displaystyle \mathbb {C} } that leave the real numbers fixed are the identity map and complex conjugation.

Use as a variable

[edit]

Once a complex numberz=x+yi{\displaystyle z=x+yi} orz=reiθ{\displaystyle z=re^{i\theta }} is given, its conjugate is sufficient to reproduce the parts of thez{\displaystyle z}-variable:

Furthermore,z¯{\displaystyle {\overline {z}}} can be used to specify lines in the plane: the set{z:zr¯+z¯r=0}{\displaystyle \left\{z:z{\overline {r}}+{\overline {z}}r=0\right\}}is a line through the origin and perpendicular tor,{\displaystyle {r},} since the real part ofzr¯{\displaystyle z\cdot {\overline {r}}} is zero only when the cosine of the angle betweenz{\displaystyle z} andr{\displaystyle {r}} is zero. Similarly, for a fixed complex unitu=eib,{\displaystyle u=e^{ib},} the equationzz0z¯z0¯=u2{\displaystyle {\frac {z-z_{0}}{{\overline {z}}-{\overline {z_{0}}}}}=u^{2}}determines the line throughz0{\displaystyle z_{0}} parallel to the line through 0 andu.{\displaystyle u.}

These uses of the conjugate ofz{\displaystyle z} as a variable are illustrated inFrank Morley's bookInversive Geometry (1933), written with his son Frank Vigor Morley.

Generalizations

[edit]

The other planar real unital algebras,dual numbers, andsplit-complex numbers are also analyzed using complex conjugation.

For matrices of complex numbers,AB¯=(A¯)(B¯),{\textstyle {\overline {\mathbf {AB} }}=\left({\overline {\mathbf {A} }}\right)\left({\overline {\mathbf {B} }}\right),} whereA¯{\textstyle {\overline {\mathbf {A} }}} represents the element-by-element conjugation ofA.{\displaystyle \mathbf {A} .}[3] Contrast this to the property(AB)=BA,{\textstyle \left(\mathbf {AB} \right)^{*}=\mathbf {B} ^{*}\mathbf {A} ^{*},} whereA{\textstyle \mathbf {A} ^{*}} represents theconjugate transpose ofA.{\textstyle \mathbf {A} .}

Taking theconjugate transpose (or adjoint) of complexmatrices generalizes complex conjugation. Even more general is the concept ofadjoint operator for operators on (possibly infinite-dimensional) complexHilbert spaces. All this is subsumed by the *-operations ofC*-algebras.

One may also define a conjugation forquaternions andsplit-quaternions: the conjugate ofa+bi+cj+dk{\textstyle a+bi+cj+dk} isabicjdk.{\textstyle a-bi-cj-dk.}

All these generalizations are multiplicative only if the factors are reversed:(zw)=wz.{\displaystyle {\left(zw\right)}^{*}=w^{*}z^{*}.}

Since the multiplication of planar real algebras iscommutative, this reversal is not needed there.

There is also an abstract notion of conjugation forvector spacesV{\textstyle V} over thecomplex numbers. In this context, anyantilinear mapφ:VV{\textstyle \varphi :V\to V} that satisfies

  1. φ2=idV,{\displaystyle \varphi ^{2}=\operatorname {id} _{V}\,,} whereφ2=φφ{\displaystyle \varphi ^{2}=\varphi \circ \varphi } andidV{\displaystyle \operatorname {id} _{V}} is theidentity map onV,{\displaystyle V,}
  2. φ(zv)=z¯φ(v){\displaystyle \varphi (zv)={\overline {z}}\varphi (v)} for allvV,zC,{\displaystyle v\in V,z\in \mathbb {C} ,} and
  3. φ(v1+v2)=φ(v1)+φ(v2){\displaystyle \varphi \left(v_{1}+v_{2}\right)=\varphi \left(v_{1}\right)+\varphi \left(v_{2}\right)\,} for allv1,v2V,{\displaystyle v_{1},v_{2}\in V,}

is called acomplex conjugation, or areal structure. As the involutionφ{\displaystyle \varphi } isantilinear, it cannot be the identity map onV.{\displaystyle V.}

Of course,φ{\textstyle \varphi } is aR{\textstyle \mathbb {R} }-linear transformation ofV,{\textstyle V,} if one notes that every complex spaceV{\displaystyle V} has a real form obtained by taking the samevectors as in the original space and restricting the scalars to be real. The above properties actually define a real structure on the complex vector spaceV.{\displaystyle V.}[4]

One example of this notion is the conjugate transpose operation of complex matrices defined above. However, on generic complex vector spaces, there is nocanonical notion of complex conjugation.

See also

[edit]

References

[edit]
  1. ^"Lesson Explainer: Matrix Representation of Complex Numbers | Nagwa".www.nagwa.com. Retrieved2023-01-04.
  2. ^abFriedberg, Stephen; Insel, Arnold; Spence, Lawrence (2018),Linear Algebra (5 ed.), Pearson,ISBN 978-0134860244, Appendix D
  3. ^Arfken,Mathematical Methods for Physicists, 1985, pg. 201
  4. ^Budinich, P. and Trautman, A.The Spinorial Chessboard. Springer-Verlag, 1988, p. 29

Footnotes

[edit]
  1. ^SeeExponentiation#Non-integer powers of complex numbers.

Bibliography

[edit]
  • Budinich, P. and Trautman, A.The Spinorial Chessboard. Springer-Verlag, 1988.ISBN 0-387-19078-3. (antilinear maps are discussed in section 3.3).
Retrieved from "https://en.wikipedia.org/w/index.php?title=Complex_conjugate&oldid=1305320827"
Category:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp