In themathematical field ofLie theory, there aretwo definitions of acompactLie algebra. Extrinsically and topologically, a compact Lie algebra is the Lie algebra of acompact Lie group;[1] this definition includes tori. Intrinsically and algebraically, a compact Lie algebra is a real Lie algebra whoseKilling form isnegative definite; this definition is more restrictive and excludes tori.[2] A compact Lie algebra can be seen as the smallestreal form of a corresponding complex Lie algebra, namely the complexification.
Formally, one may define a compact Lie algebra either as the Lie algebra of a compactLie group, or as a real Lie algebra whose Killing form is negative definite. These definitions do not quite agree:[2]
The Killing form on the Lie algebra of a compact Lie group isnegativesemidefinite, not negative definite in general.
If the Killing form of a Lie algebra is negative definite, then the Lie algebra is the Lie algebra of a compactsemisimple Lie group.
In general, the Lie algebra of a compact Lie group decomposes as the Lie algebra direct sum of a commutative summand (for which the corresponding subgroup is a torus) and a summand on which the Killing form is negative definite.
It is important to note that the converse of the first result above is false: Even if the Killing form of a Lie algebra is negative semidefinite, this does not mean that the Lie algebra is the Lie algebra of some compact group. For example, the Killing form on the Lie algebra of theHeisenberg group is identically zero, hence negative semidefinite, but this Lie algebra is not the Lie algebra of any compact group.
Compact Lie algebras arereductive;[3] note that the analogous result is true for compact groups in general.
The Lie algebra for the compact Lie groupG admits an Ad(G)-invariantinner product,.[4] Conversely, if admits an Ad-invariant inner product, then is the Lie algebra of some compact group.[5] If is semisimple, this inner product can be taken to be the negative of the Killing form. Thus relative to this inner product, Ad(G) acts byorthogonal transformations () and acts byskew-symmetric matrices ().[4] It is possible to develop the theory of complex semisimple Lie algebras by viewing them as the complexifications of Lie algebras of compact groups;[6] the existence of an Ad-invariant inner product on the compact real form greatly simplifies the development.
This can be seen as a compact analog ofAdo's theorem on the representability of Lie algebras: just as every finite-dimensional Lie algebra in characteristic 0 embeds in every compact Lie algebra embeds in
TheSatake diagram of a compact Lie algebra is theDynkin diagram of the complex Lie algebra withall vertices blackened.
Compact Lie algebras are opposite tosplit real Lie algebras amongreal forms, split Lie algebras being "as far as possible" from being compact.
Hall, Brian C. (2015),Lie Groups, Lie Algebras, and Representations: An Elementary Introduction, Graduate Texts in Mathematics, vol. 222 (2nd ed.), Springer,ISBN978-0-387-40122-5.
Knapp, Anthony W. (2002),Lie Groups Beyond an Introduction, Progress in Mathematics, vol. 140 (2nd ed.), Boston: Birkhäuser,ISBN0-8176-4259-5.