Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cluster state

From Wikipedia, the free encyclopedia
Entangled state of qubits
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Cluster state" – news ·newspapers ·books ·scholar ·JSTOR
(October 2015) (Learn how and when to remove this message)

Inquantum information andquantum computing, acluster state[1] is a type of highly entangled state of multiplequbits. Cluster states are generated inlattices of qubits withIsing type interactions. A clusterC is a connected subset of ad-dimensional lattice, and a cluster state is a pure state of the qubits located onC. They are different from other types of entangled states such asGHZ states orW states in that it is more difficult to eliminatequantum entanglement (viaprojective measurements) in the case of cluster states. Another way of thinking of cluster states is as a particular instance ofgraph states, where the underlying graph is a connected subset of ad-dimensional lattice. Cluster states are especially useful in the context of theone-way quantum computer. For a comprehensible introduction to the topic seeBriegel (2009).

Formally, cluster states|ϕ{κ}C{\displaystyle |\phi _{\{\kappa \}}\rangle _{C}} are states which obey the set eigenvalue equations:

K(a)|ϕ{κ}C=(1)κa|ϕ{κ}C{\displaystyle K^{(a)}{\left|\phi _{\{\kappa \}}\right\rangle _{C}}=(-1)^{\kappa _{a}}{\left|\phi _{\{\kappa \}}\right\rangle _{C}}}

whereK(a){\displaystyle K^{(a)}} are the correlation operators

K(a)=σx(a)bN(a)σz(b){\displaystyle K^{(a)}=\sigma _{x}^{(a)}\bigotimes _{b\in \mathrm {N} (a)}\sigma _{z}^{(b)}}

withσx{\displaystyle \sigma _{x}} andσz{\displaystyle \sigma _{z}} beingPauli matrices,N(a){\displaystyle N(a)} denoting theneighbourhood ofa{\displaystyle a} and{κa{0,1}|aC}{\displaystyle \{\kappa _{a}\in \{0,1\}|a\in C\}} being a set of binary parameters specifying the particular instance of a cluster state.

Examples with qubits

[edit]

Here are some examples of one-dimensional cluster states (d=1), forn=2,3,4{\displaystyle n=2,3,4}, wheren{\displaystyle n} is the number of qubits. We takeκa=0{\displaystyle \kappa _{a}=0} for alla{\displaystyle a}, which means the cluster state is the unique simultaneous eigenstate that has corresponding eigenvalue 1 under all correlation operators. In each example the set of correlation operators{K(a)}a{\displaystyle \{K^{(a)}\}_{a}}and the corresponding cluster state is listed.

|ϕ=12(|0++|1){\displaystyle |\phi \rangle ={\frac {1}{\sqrt {2}}}(|0+\rangle +|1-\rangle )}
This is an EPR-pair (up to local transformations).
{σxσzI, σzσxσz, Iσzσx}{\displaystyle \{\sigma _{x}\sigma _{z}I,\ \sigma _{z}\sigma _{x}\sigma _{z},\ I\sigma _{z}\sigma _{x}\}}
|ϕ=12(|+0++|1){\displaystyle |\phi \rangle ={\frac {1}{\sqrt {2}}}(|+0+\rangle +|-1-\rangle )}
This is the GHZ-state (up to local transformations).
{σxσzII, σzσxσzI, Iσzσxσz, IIσzσx}{\displaystyle \{\sigma _{x}\sigma _{z}II,\ \sigma _{z}\sigma _{x}\sigma _{z}I,\ I\sigma _{z}\sigma _{x}\sigma _{z},\ II\sigma _{z}\sigma _{x}\}}
|ϕ=12(|+0+0+|+01+|1+0|11){\displaystyle |\phi \rangle ={\frac {1}{2}}(|+0+0\rangle +|+0-1\rangle +|-1+0\rangle -|-1-1\rangle )}.
This is not a GHZ-state andcan not be converted to a GHZ-state with local operations.

In all examplesI{\displaystyle I} is the identity operator, and tensor products are omitted. The states above can be obtained from the all zero state|00{\displaystyle |0\ldots 0\rangle } by first applying a Hadamard gate to every qubit, and then a controlled-Z gate between all qubits that are adjacent to each other.

Experimental creation of cluster states

[edit]

Cluster states can be realized experimentally. One way to create a cluster state is by encodinglogical qubits into the polarization of photons, one common encoding is the following:

{|0L|H|1L|V{\displaystyle {\begin{cases}|0\rangle _{\rm {L}}\longleftrightarrow |{\rm {H\rangle }}\\|1\rangle _{\rm {L}}\longleftrightarrow |{\rm {V\rangle }}\end{cases}}}

This is not the only possible encoding, however it is one of the simplest: with this encoding entangled pairs can be created experimentally throughspontaneous parametric down-conversion.[2][3] The entangled pairs that can be generated this way have the form

|ψ=12(|H|H+eiϕ|V|V){\displaystyle |\psi \rangle ={\frac {1}{\sqrt {2}}}{\big (}|{\rm {H\rangle |{\rm {H\rangle +e^{i\phi }|{\rm {V\rangle |{\rm {V\rangle {\big )}}}}}}}}}}

equivalent to the logical state

|ψ=12(|0|0+eiϕ|1|1){\displaystyle |\psi \rangle ={\frac {1}{\sqrt {2}}}{\big (}|0\rangle |0\rangle +e^{i\phi }|1\rangle |1\rangle {\big )}}

for the two choices of the phaseϕ=0,π{\displaystyle \phi =0,\pi } the twoBell states|Φ+,|Φ{\displaystyle |\Phi ^{+}\rangle ,|\Phi ^{-}\rangle } are obtained: these are themselves two examples of two-qubits cluster states. Through the use of linear optic devices asbeam-splitters orwave-plates these Bell states can interact and form more complex cluster states.[4] Cluster states have been created also inoptical lattices ofcold atoms.[5]

Entanglement criteria and Bell inequalities for cluster states

[edit]

After a cluster state was created in an experiment, it is important to verify that indeed, an entangled quantum state has been created. Thefidelity with respect to theN{\displaystyle N}-qubit cluster state|CN{\displaystyle |C_{N}\rangle } is given by

FCN=Tr(ρ|CNCN|),{\displaystyle F_{CN}={\rm {Tr}}(\rho |C_{N}\rangle \langle C_{N}|),}

It has been shown that ifFCN>1/2{\displaystyle F_{CN}>1/2}, then the stateρ{\displaystyle \rho } has genuine multiparticle entanglement.[6] Thus, one can obtain anentanglement witness detecting entanglement close the cluster states as

WCN=12Identity|CNCN|.{\displaystyle W_{CN}={\frac {1}{2}}{\rm {Identity}}-|C_{N}\rangle \langle C_{N}|.}

whereWCN<0{\displaystyle \langle W_{CN}\rangle <0} signals genuine multiparticle entanglement.

Such a witness cannot be measured directly. It has to be decomposed to a sum of correlations terms, which can then be measured. However, for large systems this approach can be difficult.

There are also entanglement witnesses that work in very large systems, and they also detect genuine multipartite entanglement close to cluster states. They need only the minimal two local measurement settings.[6] Similar conditions can also be used to put a lower bound on the fidelity with respect to an ideal cluster state.[7] These criteria have been used first in an experiment realizing four-qubit cluster states with photons.[3] These approaches have also been used to propose methods for detecting entanglement in a smaller part of a large cluster state or graph state realized in optical lattices.[8]

Bell inequalities have also been developed for cluster states.[9][10][11] All these entanglement conditions and Bell inequalities are based on the stabilizer formalism.[12]

See also

[edit]

References

[edit]

[13]

  1. ^H. J. Briegel; R. Raussendorf (2001). "Persistent Entanglement in arrays of Interacting Particles".Physical Review Letters.86 (5):910–3.arXiv:quant-ph/0004051.Bibcode:2001PhRvL..86..910B.doi:10.1103/PhysRevLett.86.910.PMID 11177971.S2CID 21762622.
  2. ^P. Walther, K. J. Resch, T. Rudolph, E. Schenck, H. Weinfurter, V. Vedral,M. Aspelmeyer andA. Zeilinger (2005). "Experimental one-way quantum computing".Nature.434 (7030):169–76.arXiv:quant-ph/0503126.Bibcode:2005Natur.434..169W.doi:10.1038/nature03347.PMID 15758991.S2CID 119329998.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  3. ^abN. Kiesel; C. Schmid; U. Weber; G. Tóth; O. Gühne; R. Ursin; H. Weinfurter (2005). "Experimental Analysis of a 4-Qubit Cluster State".Phys. Rev. Lett.95 (21) 210502.arXiv:quant-ph/0508128.Bibcode:2005PhRvL..95u0502K.doi:10.1103/PhysRevLett.95.210502.PMID 16384122.S2CID 5322108.
  4. ^Zhang, An-Ning; Lu, Chao-Yang; Zhou, Xiao-Qi; Chen, Yu-Ao; Zhao, Zhi; Yang, Tao; Pan, Jian-Wei (2006-02-17)."Experimental construction of optical multiqubit cluster states from Bell states".Physical Review A.73 (2) 022330.arXiv:quant-ph/0501036.Bibcode:2006PhRvA..73b2330Z.doi:10.1103/PhysRevA.73.022330.ISSN 1050-2947.S2CID 118882320.
  5. ^O. Mandel; M. Greiner; A. Widera; T. Rom; T. W. Hänsch; I. Bloch (2003). "Controlled collisions for multi-particle entanglement of optically trapped atoms".Nature.425 (6961):937–940.arXiv:quant-ph/0308080.Bibcode:2003Natur.425..937M.doi:10.1038/nature02008.PMID 14586463.S2CID 4408587.
  6. ^abTóth, Géza; Gühne, Otfried (17 February 2005). "Detecting Genuine Multipartite Entanglement with Two Local Measurements".Physical Review Letters.94 (6) 060501.arXiv:quant-ph/0405165.Bibcode:2005PhRvL..94f0501T.doi:10.1103/PhysRevLett.94.060501.PMID 15783712.S2CID 13371901.
  7. ^Tóth, Géza; Gühne, Otfried (29 August 2005). "Entanglement detection in the stabilizer formalism".Physical Review A.72 (2) 022340.arXiv:quant-ph/0501020.Bibcode:2005PhRvA..72b2340T.doi:10.1103/PhysRevA.72.022340.S2CID 56269409.
  8. ^Alba, Emilio; Tóth, Géza; García-Ripoll, Juan José (21 December 2010). "Mapping the spatial distribution of entanglement in optical lattices".Physical Review A.82 (6) 062321.arXiv:1007.0985.doi:10.1103/PhysRevA.82.062321.
  9. ^Scarani, Valerio; Acín, Antonio; Schenck, Emmanuel; Aspelmeyer, Markus (18 April 2005)."Nonlocality of cluster states of qubits".Physical Review A.71 (4) 042325.arXiv:quant-ph/0405119.Bibcode:2005PhRvA..71d2325S.doi:10.1103/PhysRevA.71.042325.S2CID 4805039.
  10. ^Gühne, Otfried; Tóth, Géza; Hyllus, Philipp; Briegel, Hans J. (14 September 2005). "Bell Inequalities for Graph States".Physical Review Letters.95 (12) 120405.arXiv:quant-ph/0410059.Bibcode:2005PhRvL..95l0405G.doi:10.1103/PhysRevLett.95.120405.PMID 16197057.S2CID 5973814.
  11. ^Tóth, Géza; Gühne, Otfried; Briegel, Hans J. (2 February 2006). "Two-setting Bell inequalities for graph states".Physical Review A.73 (2) 022303.arXiv:quant-ph/0510007.Bibcode:2006PhRvA..73b2303T.doi:10.1103/PhysRevA.73.022303.S2CID 108291031.
  12. ^Gottesman, Daniel (1 September 1996). "Class of quantum error-correcting codes saturating the quantum Hamming bound".Physical Review A.54 (3):1862–1868.arXiv:quant-ph/9604038.Bibcode:1996PhRvA..54.1862G.doi:10.1103/PhysRevA.54.1862.PMID 9913672.S2CID 16407184.
  13. ^Briegel, Hans J. (12 August 2009). "Cluster States". In Greenberger, Daniel; Hentschel, Klaus & Weinert, Friedel (eds.).Compendium of Quantum Physics - Concepts, Experiments, History and Philosophy. Springer. pp. 96–105.ISBN 978-3-540-70622-9.
General
Theorems
Quantum
communication
Quantum cryptography
Quantum algorithms
Quantum
complexity theory
Quantum
processor benchmarks
Quantum
computing models
Quantum
error correction
Physical
implementations
Quantum optics
Ultracold atoms
Spin-based
Superconducting
Quantum
programming
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cluster_state&oldid=1313714181"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp