Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Climate change in Texas

From Wikipedia, the free encyclopedia
Climate change in the US state of Texas
This article'suse ofexternal links may not follow Wikipedia's policies or guidelines. Pleaseimprove this article by removingexcessive orinappropriate external links, and converting useful links where appropriate intofootnote references.(December 2022) (Learn how and when to remove this message)

Theclimate in Texas is changing partially due toglobal warming and rising trends ingreenhouse gas emissions.[1] As of 2016, most area of Texas had already warmed by 1.5 °F (0.83 °C) since the previous century because ofgreenhouse gas emissions by the United States and other countries.[1] Texas is expected to experience a wide range of environmental impacts fromclimate change in the United States, includingrising sea levels, more frequentextreme weather events, and increasing pressure onwater resources.[1]

The Valero Refinery in Three Rivers, Texas[2]

Texas was ranked second byGDP across theU.S. in 2020 and had a fast growing economy.[3] According to U.S.Energy Information Administration, a large portion of Texas economic growth from 2005 to 2016 came fromconventional energy production.[4]

Houses destroyed by wildfire, Dallas, July 2022

Although Texas has a long history of conventional energy production (e.g., petroleum and natural gas), therenewable energy industry has also been rapidly growing in Texas.Solar industry jobs have been increasing and wind farms have been built in West Texas in recent years.[5][6] Considering the advantages such as sunny weather,flat land and friendly business climate, Texas has high potential to develop more renewable energy in the future.[6] In addition, there are emerging local and regional actions to address climate change across Texas. For example,Austin,Houston,Dallas, andSan Antonio initiated Climate Action Plans in recent years.[7][8][9][10] The government agencies also implemented programs such asTexas Emissions Reduction Plan andInnovative Energy Demonstration Program to promote the use of renewable energy andclimate education in Texas.

Emissions and energy

[edit]
Roscoe Wind Farm,Nolan County

In the U.S., Texas was ranked first in terms of totalcarbon dioxide emissions in 2017 and totalenergy production in 2018.[11][12] As of February 2020, Texas'senergy mix included 18,705,000kWhnatural gas, 4,823,000kWhcoal, 3,548,000kWh nuclear and 8,317,000kWhrenewables.[13] Half of the energy consumed in Texas was fromrefineries andpetrochemical plants.[13]

Texas accounted for 41% ofcrude oil production, 25% ofnatural gas, and 31% of refining capacity, and had some of the highest potential forsustainable energy production, producing 28% ofwind power for the United States.[14]

Climate change impacts

[edit]
Solar power station,Krugerville

Climate change is expected to have widespread and significant impacts on Texas.[15]Extremely hot days are expected be more frequent, due to the increasing average temperature. With higher temperature, there could be decreasingrelative humidity and increasingevapotranspiration.[15] Therefore, the degree ofaridity would rise and even longer and more severedroughts could happen.[15] There will be less availablewater resources underclimate change andwater scarcity can be exacerbated by the rapidly growing water demand due to fasturbanization in Texas.[1]

Destroyed houses,Hurricane Ike

Additionally,sea level rise along the Texas coastline is likely to be greater than the projected globalsea level rise (i.e., 1–4 feet) to the end of this century, which makes the coastal region more susceptible tostorm surges.[15] Extreme weather events likehurricanes might be more intense which can make much larger losses and threaten the local residents.[1]

There is also an increasing trend of both frequency and intensity of heavy precipitation with light or normal rains less likely to happen in the future, which could lead to highersoil moisture stress in Texas.[15][16]

Extreme weather

[edit]
Hurricane Harvey temperature map, satellite data[17][18]

Overall, the amount ofprecipitation on extremely wet or snowy days is likely to decrease in winter and increase in summer.[1]Storms with heavy rain are expected to become more extreme, causingflooding.[1] The frequency of extremely hot days in summer is also expected to increase because of the general warming trend.[1] Manyarid areas in Texas will likely enterdesertification or lose its productivity for activities likelivestock.[1] A warmer atmosphere can hold more moisture, making more extreme flooding possible; according toClimate Central, San Antonio rainfall intensity has increased by 6% since 1970 while Austin's has risen by 19%.[19][20][21]

In 2020, high temperatures and lack of rainfall led to adrought withD3 (extreme) andD4 (exceptional) categories in Texas as well as many other Western and Central states. TheWestern/Central Drought and Heatwave (event name) lasted through the months of June to December and resulted in 45 deaths as well as an estimated cost of 4.5 billion dollars.[22]

In February 2021, Texas experienced terrible snowstorms and wide-range unexpected power outages that was uncommon in history, which might have been caused by climate change based on related researches.[23]

According to theFifth National Climate Assessment published in 2023, coastal states including California, Florida, Louisiana, and Texas are experiencing "more significant storms and extreme swings in precipitation".[24]

Hurricane Harvey

[edit]
Flooded house, Hurricane Harvey
Hurricane Harvey warning sign

In August 2017,Hurricane Harvey caused unprecedented damages acrossGreater Houston which made it rank right afterHurricane Katrina as the second most destructive storm in the U.S. history.[25] Numerous studies in attribution science (i.e., a relatively new study field in which scientists study the attributions of extreme weather events) were conducted to explain the role ofclimate change duringHurricane Harvey in Texas. It was found that around one fifth of totalprecipitation duringHurricane Harvey as well as the extremely enlarged chances of the observed rainfall in part of Houston during the event could be attributed toanthropogenic climate change.[26] In addition, a quantitative attribution analysis was conducted to study Harvey's extreme precipitation by using the Advanced Research Weather Research and Forecasting (WRF-ARW)model.[27][28]

Rescue during Hurricane Harvey, Houston

The results from a series ofdownscaling simulations indicated that around one-fifth of the total extreme precipitation over southeast Texas during the event could be attributed toclimate warming that happened after 1980.[28] Moreover, the impacts fromurbanization andclimate change to flooding inHouston during Harvey was investigated and themodel simulation results indicated thatclimate change could elevate the peakstreamflow by one-fifth.[29] It was also found that the influence of climate change on flooding can be significantly amplified by the fast-expanding urban areas around Houston.[29]

Coastal changes

[edit]
Trailer thrown into the sea,Hurricane Ike

Sea level is rapidly rising in many parts of the Texascoastal region because of both sinking land due togroundwater pumping andclimate change.[1][15] More storm surge events are expected to happen along the coastal region.[15] These changes and more extremehurricanes indicate that not only Texas's coastal infrastructure including public infrastructure, fossil fuel infrastructure, and other housing infrastructure will be endangered but also the residents' life will be threatened.[1] In addition, the coastalecosystem is also expected to be at risk due to the potential change ofsalinity gradient in coastalwetland areas.[15]

Water resources

[edit]
Dead corn, 2013 drought

There are 15 major river basins lying partly or entirely within Texas.[30] Unless warmer climate are coupled with a strong increase in rainfall,water resources could become more scarce in Texas.[1] In some parts of Texas, increased rainfall could mitigate these effects, but also could contribute to localizedflooding. Additionally,climate change could give rise to more frequent and intense rainfall, resulting inflash flooding.[1]

Surface water

[edit]
Stranded boat,Lake Travis,2011 drought
Drought-tolerant landscaping,Austin

In a warmer and drier climate condition, open waterevaporation is expected to be enhanced which can lead to the shrink of lakes, rivers, and streams as well as loss of reservoir storage.[31][30] Meanwhile, the increasingextreme weathers andthe widely variedTexas' weather make it more challenging for the local water resources managers andregional water planners to manage the available surface water resources.

Groundwater

[edit]
North Pease River, Cottle County, Texas[17]

In general, Texasgroundwater storage is projected to decrease due to the declininggroundwater recharging rate under climate change.[32] A warmer and drier climate can lead to largerevaporation as well as less water for recharging groundwateraquifers especially in Western Texas where aquifers were already under significant pressure.[1]

Meanwhile, in a warmer climate, drier soil due to increasing evaporation is expected to lower the efficiency of agriculturalirrigation, which might increase the groundwater pumping for irrigation. Furthermore, to feed the rapidly growing population in Texas, the potential stress on groundwater can have negative impacts onaquifer yield and surface water resources.[30] Therefore, thearidity andwater scarcity is very likely to be exacerbated across Texas in the future.

By the end of this century, theEdwards Aquifer is expected to experience obvious decrease (around 20% - 30%) inrecharge while the water demand would rise significantly in this region due to the fast population growth, which could leads to unprecedently reduced streamflow at local spring system.[33][30]

Wildfires

[edit]
Chalk Mountain wildfire, July 2022
Destroyed houses, Possum Kingdom wildfire, 2011
Wildfire aftermath,Canyon Creek

According to the EPA, "higher temperatures and drought are likely to increase the severity,frequency, and extent of wildfires."[34] According to Wes Moorehead, fire chief at the Texas A&M Forest Service, "Wildfire in Texas does seem to be a growing problem. We see more and more wildfires, it seems like, every year."[35] As of 2022, Texas has the second highest wildfire risk in the United States.[35] According to research byTexas A&M University, climate and weather trends in Texas are increasing the wildfire risk, although perhaps less so inWest Texas.[36][37]

Effects on health

[edit]
Smoke pollution from wildfires,Palo Pinto County, July 2022

Hot weather in the state can cause adverse health effects on vulnerable populations, likeheat stroke anddehydration, which could affect people's cardiovascular and nervous systems. Warmer air also increases the production of ground-level ozone, which can worsen lung diseases likeasthma, and can also cause heart disease, increasing the danger of premature death.[1] More extreme storms have also taken a toll on Texans' mental health, particularly those who have survived Hurricane Harvey. Weeks after Harvey hit the state, researchers were surveying across the hardest-hit areas, and found that 46 percent of Houston area participants met the necessary symptoms forPTSD. More than half of the 41 survivors in the survey had symptoms of anxiety.[38]

Action to address climate change

[edit]
Electric vehicle charger, El Paso

City action

[edit]
Climate Justice Walk, Houston 2014

Texas has the followingClean Cities coalitions:

Georgetown, Texas was powered 100% byrenewable energy.[42]

Climate Action Plans

[edit]
icon
This sectionrelies excessively onreferences toprimary sources. Please improve this section by addingsecondary or tertiary sources.
Find sources: "Climate change in Texas" – news ·newspapers ·books ·scholar ·JSTOR
(May 2022) (Learn how and when to remove this message)

Austin

[edit]
Solar array, Austin

Austin developed theAustin Community Climate Plan in 2015 with goals to becomecarbon neutral in 2050.[8] The plan details numerous actions that should be taken by the Electricity and Natural Gas, Transportation and Land Use, and Material and Waste Management Sectors to reducegreenhouse gases.[8] It also identifies how different members of the community can fit in to this plan and what benefits it could provide to them such as lower energy costs and enhancedpublic transportation options.[8]

Houston

[edit]

Houston initiated theHouston Climate Action Plan on April 22, 2020 with the goal set by theParis Climate Agreement to becomecarbon neutral by 2050.[43] The plan has four focus areas: transportation,energy transition, building optimization, and materials management.[7] They hope that the plan will provide other benefits besides reducing emissions such as savings fromenergy efficiency and lesstraffic congestion.

Dallas

[edit]
Solar panels,Fair Park

Dallas initiated theDallas Comprehensive Environmental and Climate Action Plan on May 27, 2020 with the goal to reducegreenhouse gas emissions by 43% by 2030 and becarbon neutral by 2050.[9][44] The plan outlines eight focus areas to reach its goals: renewable energy, energy efficient building construction, access to sustainable transportation,zero waste, water resource protection, green spaces, access to healthy and local food, and clean air.[44] Through partnerships, grants and loans, legislation, green bonds, voluntary participations, and incentives, the city of Dallas plans to implement its proposed actions.[9][44] However,teaching knowledge,leadership and policies are still lacking in theclimate education system inDallas–Fort Worth metroplex.[45] Therefore, more approaches about climate education such as teacher professional development courses, community service learning as well as museum exhibits are encouraged over the region to improvepublic awareness about climate change.[45]

San Antonio

[edit]

San Antonio adopted the city's firstClimate Action and Adaption Plan (CAAP) on October 17, 2019. As one of the fastest growing city in the U.S., San Antonio has been taking actions to reducegreenhouse gases and prepare forclimate change.[46] To achieve goals ofclimate change mitigation andclimate change adaptation,a report about CAAP was developed by the local government to promote sustainable development.[47][48][10]

Renewable energy

[edit]
Solar panel installation, Krugerville

In general, Texas has a long history ofconventional energy production (e.g.,petroleum andnatural gas) as well as aRepublican-controlled state legislature. UnlikeCalifornia, the majority of Texas legislature remains opposed to actions about addressingclimate change.[6] For example, the Senate Bill 2069 aiming at developing aclimate adaptation plan over Texas was not implemented because thehearing was not held.[6] However, therenewable energy industry has been rapidly growing in Texas. In 2016, there were around 7,000solar industry jobs over Texas and the number of positions climbed to almost 10,000 in 2018.[6] The number of Texas solar industry jobs in 2018 is around twice as much as those inIllinois but still far behindCalifornia.[6] It indicates that Texas has high potential to develop more renewable energy in the future considering the advantages such as sunny weather,flat land and friendly business climate.[6]

Texas can reducegreenhouse gas by developing renewable energy production but also could meet challenges becausewind andsolar energy are highly dependent on weather and their production is non-continuous. The first challenge is the electricity supply-demand balance.[49]Solar irradiance is available during daytime and both solar and wind energy have daily and seasonal variability. The second challenge is the discrepancies of different regions (e.g.,topography,land use, local operational decisions) over Texas, which can impact therenewable power generation and capacity.[50] In Texas, the total generation of these two energy production is expected to grow around 2040 to 2050 compared to the period from 1995 to 2005.[50] However, model results indicate that there are obvious spatial and temporal differences in therenewable energy distribution over Texas. Therefore, it is important to conduct studies using higher resolution data to facilitate the investigation of climate change influences on the potential ofrenewable power production in Texas.[50]

Wind power

[edit]
Main article:Wind power in Texas
Brazos Wind Farm

Texas has been in the top-tier of wind energy production over the U.S. since 2000.[5] According to theElectric Reliability Council of Texas (ERCOT), wind power accounted for at least 15.7 percent of the electricity generated in Texas during 2017. Wind power accounted for 17.4 percent of the electricity managed by ERCOT.[51][52] Some wind farms have been built in West Texas in recent decades.[53] The emerging wind farms not only reduced the air pollution but also benefited local land owners who leased or sold their land to the wind power generator as well as their neighborhood.[53] Also, the local land owners had higher net income than before partly due to the declined county property tax rates.[53] Moreover, the quality of local public schools has increased because of the immigration of higher educated people to the region.[53]

The transmission of wind power is one of the biggest challenge because the best wind source isTexas Panhandle which is located in the northern part of Texas, but the load center is located in the eastern Texas.[54] As for wind power, there were different perspectives about the transmission and the related challenges in Texas.[54] For example, some stakeholders proposed that building more transmission infrastructure was necessary, which was opposed by some environmentalists.[54] There were also concerns about the new complexity brought by building transmission infrastructure to the overall renewable energy market in Texas.[54] In conclusion, Texas has strong natural wind energy resources and there exists increasing local and community supports regardingwind power development.[5][54]

Grants

[edit]
Solar car racing challenge,Texas Motor Speedway

TheTexas Emissions Reduction Plan (TERP) provides grants for alternative fuel and advanced technology demonstration and infrastructure projects. Under TERP, theNew Technology Research and Development (NTRD) Program provides incentives to encourage and support research, development, and commercialization of technologies that reduce pollution in Texas.[55] The NTRD Program is administered by theTexas Environmental Research Consortium, with support from theHouston Advanced Research Center which focuses on scientific and engineering-related research about sustainable development.[56]

TheTexas State Energy Conservation Office (SECO) researches and assists public and private entities in securing grants to encourage the use of alternative fuels.[57] This includes the use ofhybrid electric vehicles and the conversion of state and local government fleets to operate on compressed natural gas,liquefied petroleum gas, hydrogen,biodiesel, andbioethanol.[57] SECO has programs such asClean Energy Incubators,Alternative Fuel Program,Innovative Energy Demonstration Program as well asfunding opportunities to help Texas cope with the potential impacts fromclimate change.

See also

[edit]

References

[edit]
  1. ^abcdefghijklmno"What Climate Change Means for Texas" (PDF). EPA. August 2016. EPA 430-F-16-045.
  2. ^"File:Valero Three Rivers Refinery Texas 2020.jpg". Retrieved2020-04-15.
  3. ^Bureau of Economic Analysis."Gross domestic product (GDP) by state (millions of current dollars)". Retrieved2021-04-10.
  4. ^U.S Energy Information Administration."Energy-Related Carbon Dioxide Emissions by State, 2005–2016"(PDF). Retrieved2021-04-10.
  5. ^abcBrannstrom, Christian; Jepson, Wendy; Persons, Nicole (2011-05-10)."Social Perspectives on Wind-Power Development in West Texas".Annals of the Association of American Geographers.101 (4):839–851.doi:10.1080/00045608.2011.568871.ISSN 0004-5608.S2CID 153951312.
  6. ^abcdefgCrowe, Jessica A.; Li, Ruopu (2020-01-01). "Is the just transition socially accepted? Energy history, place, and support for coal and solar in Illinois, Texas, and Vermont".Energy Research & Social Science.59 101309.Bibcode:2020ERSS...5901309C.doi:10.1016/j.erss.2019.101309.ISSN 2214-6296.S2CID 204422868.
  7. ^ab"Houston Climate Action Plan"(PDF).
  8. ^abcd"Austin Community Climate Plan"(PDF).
  9. ^abc"Dallas Climate Action". Retrieved2021-04-14.
  10. ^ab"San Antonio, Texas Climate Action and Adaptation Plan - SA Climate Ready". Retrieved2021-04-15.
  11. ^"Total Carbon Dioxide Emissions, 2017".U.S. Energy Information Administration (EIA). Retrieved2021-04-10.
  12. ^"Total Energy Production, 2018".U.S. Energy Information Administration (EIA). Retrieved2021-04-10.
  13. ^ab"Texas - State Energy Profile Overview - U.S. Energy Information Administration (EIA)".U.S. Energy Information Administration (EIA). Retrieved2020-05-29.
  14. ^"Texas - State Energy Profile Overview - U.S. Energy Information Administration (EIA)".U.S. Energy Information Administration (EIA). Retrieved2020-05-29.
  15. ^abcdefghKloesel, Kevin; Bartush, Bill; Banner, Jay; Brown, David; Lemery, Jay; Lin, Xiaomao; Loeffler, Cindy; McManus, Gary; Mullens, Esther; Nielsen-Gammon, John; Shafer, Mark (2018). "Chapter 23: Southern Great Plains. Impacts, Risks, and Adaptation in the United States".The Fourth National Climate Assessment. Vol. II. pp. 1–470.doi:10.7930/nca4.2018.ch23. Archived fromthe original on November 23, 2018.
  16. ^USGCRP (2017). Wuebbles, D.J; Fahey, D.W; Hibbard, K.A; Dokken, D.J; Stewart, B.C; Maycock, T.K (eds.)."Climate Science Special Report".science2017.globalchange.gov.doi:10.7930/j0j964j6. Archived fromthe original on November 3, 2017. Retrieved2021-04-10.
  17. ^ab"Hurricane Harvey". Retrieved2021-04-15.
  18. ^"File:Hurricane Harvey ESA382898.jpg". 25 August 2017. Retrieved2021-04-15.
  19. ^Gilbert, Mary (2025-07-07)."Climate change is intensifying heavy rain".CNN. Retrieved2025-07-07.
  20. ^Winkley, Shel (2025-03-26)."Heavier Rainfall Rates in U.S. Cities".Climate Central. Retrieved7 July 2025.
  21. ^Paddison, Laura; Gilbert, Mary (2025-07-07)."How a hotter world helps set the stage for deadly extreme flooding".CNN. Retrieved2025-07-07.
  22. ^"Billion-Dollar Weather and Climate Disasters: Events | National Centers for Environmental Information (NCEI)".NOAA.
  23. ^"How did climate change cause the Texas snowstorm?". Retrieved2021-04-16.
  24. ^Nilsen, Ella (November 14, 2023)."No place in the US is safe from the climate crisis, but a new report shows where it's most severe".CNN.
  25. ^Natsios, Andrew (March 2021)."Hurricane Harvey: Texas at Risk"(PDF).
  26. ^Risser, Mark D.; Wehner, Michael F. (2017)."Attributable Human-Induced Changes in the Likelihood and Magnitude of the Observed Extreme Precipitation during Hurricane Harvey".Geophysical Research Letters.44 (24): 12,457–12, 464.Bibcode:2017GeoRL..4412457R.doi:10.1002/2017GL075888.ISSN 1944-8007.
  27. ^Skamarock, William C.; Klemp, Joseph B. (2008-03-01). "A time-split nonhydrostatic atmospheric model for weather research and forecasting applications".Journal of Computational Physics.227 (7):3465–3485.Bibcode:2008JCoPh.227.3465S.doi:10.1016/j.jcp.2007.01.037.ISSN 0021-9991.
  28. ^abWang, S-Y Simon; Zhao, Lin; Yoon, Jin-Ho; Klotzbach, Phil; Gillies, Robert R (2018-05-01)."Quantitative attribution of climate effects on Hurricane Harvey's extreme rainfall in Texas".Environmental Research Letters.13 (5): 054014.Bibcode:2018ERL....13e4014W.doi:10.1088/1748-9326/aabb85.ISSN 1748-9326.
  29. ^abSebastian, Antonia; Gori, Avantika; Blessing, Russell B; van der Wiel, Karin; Bass, Benjamin (2019-11-29)."Disentangling the impacts of human and environmental change on catchment response during Hurricane Harvey".Environmental Research Letters.14 (12): 124023.Bibcode:2019ERL....14l4023S.doi:10.1088/1748-9326/ab5234.ISSN 1748-9326.
  30. ^abcdNielsen-Gammon, John W.; Banner, Jay L.; Cook, Benjamin I.; Tremaine, Darrel M.; Wong, Corinne I.; Mace, Robert E.; Gao, Huilin; Yang, Zong-Liang; Gonzalez, Marisa Flores; Hoffpauir, Richard; Gooch, Tom (2020)."Unprecedented Drought Challenges for Texas Water Resources in a Changing Climate: What Do Researchers and Stakeholders Need to Know?".Earth's Future.8 (8) e2020EF001552.Bibcode:2020EaFut...801552N.doi:10.1029/2020EF001552.ISSN 2328-4277.
  31. ^Ehsani, Nima; Vörösmarty, Charles J.; Fekete, Balázs M.; Stakhiv, Eugene Z. (2017-12-01)."Reservoir operations under climate change: Storage capacity options to mitigate risk".Journal of Hydrology.555:435–446.Bibcode:2017JHyd..555..435E.doi:10.1016/j.jhydrol.2017.09.008.ISSN 0022-1694.
  32. ^Yoon, Jin-Ho; Wang, S-Y Simon; Lo, Min-Hui; Wu, Wen-Ying (2018)."Concurrent increases in wet and dry extremes projected in Texas and combined effects on groundwater".Environmental Research Letters.13 (5): 054002.Bibcode:2018ERL....13e4002Y.doi:10.1088/1748-9326/aab96b.
  33. ^Chen, Chi-Chung; Gillig, Dhazn; McCarl, Bruce A. (2001-06-01). "Effects of Climatic Change on a Water Dependent Regional Economy: A Study of the Texas Edwards Aquifer".Climatic Change.49 (4):397–409.doi:10.1023/A:1010617531401.ISSN 1573-1480.S2CID 133157858.
  34. ^"What Climate Change Means for Texas"(PDF). EPA. Retrieved8 January 2023.
  35. ^abErdenesanaa, Delger (26 April 2022)."Texas' Firestorm Future".The Texas Observer. Retrieved8 January 2023.
  36. ^"Texas Extreme Weather Assessment and Projections Report". College of Geosciences,Texas A&M University. Retrieved8 January 2023.
  37. ^Nielsen-Gammon, J; Holman, S; Buley, A; Jorgensen, S; Escobedo, J; Ott, C; Dedrick, J; Van Fleet, A."Assessment of Historic and Future Trends of Extreme Weather in Texas, 1900- 2036: 2021 Update". Office of the State Climatologist,Texas A&M University. Retrieved8 January 2023.Weather and climate drivers of wildfire risk are projected to increase the risk of wildfires throughout the state, primarily due to increased rates of drying and increased fuel load. The increase in wildfire risk may not be as large in far West Texas where rising temperatures and decreasing precipitation may overcome the carbon dioxide fertilization effect and lead to less accumulation of fuels.
  38. ^Douglas, By Erin (2022-09-08).""It's destroying me": Storm after storm, climate change increases strain on Texans' mental health".The Texas Tribune. Retrieved2025-05-22.
  39. ^"Alamo Area Clean Cities Coalition | Alamo Area Council of Governments, TX".www.aacog.com. Retrieved2021-04-06.
  40. ^"Dallas–Fort Worth Clean Cities".dfwcleancities. Retrieved2021-04-06.
  41. ^"About Us – Houston-Galveston Clean Cities Coalition". Retrieved2021-04-06.
  42. ^"Why Georgetown is 100 percent renewable". Retrieved2021-04-10.
  43. ^"Climate Action Plan". Retrieved2021-03-19.
  44. ^abc"Dallas Comprehensive Environmental and Climate Plan"(PDF). Retrieved2021-04-14.
  45. ^abFoss, Ann W.; Ko, Yekang (2019-05-04)."Barriers and opportunities for climate change education: The case of Dallas–Fort Worth in Texas".The Journal of Environmental Education.50 (3):145–159.Bibcode:2019JEnEd..50..145F.doi:10.1080/00958964.2019.1604479.ISSN 0095-8964.S2CID 155433505.
  46. ^"CLIMATE ACTION & ADAPTATION". Retrieved2020-04-15.
  47. ^"SA CLIMATE READY: A PATHWAY FOR CLIMATE ACTION & ADAPTATION"(PDF). Retrieved2021-04-15.
  48. ^"Sustainability". Retrieved2021-04-15.
  49. ^Leonard, Matthew D.;Michaelides, Efstathios E.; Michaelides, Dimitrios N. (2020-01-01)."Energy storage needs for the substitution of fossil fuel power plants with renewables".Renewable Energy.145:951–962.Bibcode:2020REne..145..951L.doi:10.1016/j.renene.2019.06.066.ISSN 0960-1481.S2CID 197432681.
  50. ^abcLosada Carreño, Ignacio; Craig, Michael T.; Rossol, Michael; Ashfaq, Moetasim; Batibeniz, Fulden; Haupt, Sue Ellen; Draxl, Caroline; Hodge, Bri-Mathias; Brancucci, Carlo (2020-11-01). "Potential impacts of climate change on wind and solar electricity generation in Texas".Climatic Change.163 (2):745–766.Bibcode:2020ClCh..163..745L.doi:10.1007/s10584-020-02891-3.ISSN 1573-1480.S2CID 226945815.
  51. ^"ERCOT Quick Facts for 2017 published July 2018"(PDF). September 9, 2018.
  52. ^"ERCOT Quick Facts for 2017 published February 2018"(PDF). February 1, 2018.
  53. ^abcdKahn, Matthew E. (2013-08-01)."Local non-market quality of life dynamics in new wind farms communities".Energy Policy.59:800–807.Bibcode:2013EnPol..59..800K.doi:10.1016/j.enpol.2013.04.037.ISSN 0301-4215.
  54. ^abcdeFischlein, Miriam; Wilson, Elizabeth J.; Peterson, Tarla R.; Stephens, Jennie C. (2013-05-01)."States of transmission: Moving towards large-scale wind power".Energy Policy.56:101–113.Bibcode:2013EnPol..56..101F.doi:10.1016/j.enpol.2012.11.028.ISSN 0301-4215.
  55. ^"New Technology Research and Development (NTRD)".Texas Environmental Research Consortium. Retrieved2021-04-13.
  56. ^"HARC". 11 August 2020. Retrieved2021-04-13.
  57. ^ab"STATE ENERGY CONSERVATION OFFICE". Retrieved2021-04-13.

Further reading

[edit]

External links

[edit]
States
Federal district
Territories
Retrieved from "https://en.wikipedia.org/w/index.php?title=Climate_change_in_Texas&oldid=1321420451"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp