Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Chrysin

From Wikipedia, the free encyclopedia
Chrysin
Chrysin
Chrysin
Ball-and-stick model of chrysin
Names
IUPAC name
5,7-Dihydroxyflavone
Systematic IUPAC name
5,7-Dihydroxy-2-phenyl-4H-1-benzopyran-4-one
Other names
NP-005901; Galangin flavanone
Identifiers
3D model (JSmol)
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard100.006.864Edit this at Wikidata
KEGG
UNII
  • InChI=1S/C15H10O4/c16-10-6-11(17)15-12(18)8-13(19-14(15)7-10)9-4-2-1-3-5-9/h1-8,16-17H checkY
    Key: RTIXKCRFFJGDFG-UHFFFAOYSA-N checkY
  • InChI=1/C15H10O4/c16-10-6-11(17)15-12(18)8-13(19-14(15)7-10)9-4-2-1-3-5-9/h1-8,16-17H
    Key: RTIXKCRFFJGDFG-UHFFFAOYAO
  • O=C\1c3c(O/C(=C/1)c2ccccc2)cc(O)cc3O
Properties
C15H10O4
Molar mass254.241 g·mol−1
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Chrysin, also called5,7-dihydroxyflavone,[1] is aflavone found inhoney,propolis, thepassion flowers,Passiflora caerulea andPassiflora incarnata, and inOroxylum indicum.[2] It isextracted from various plants, such as the blue passion flower (Passiflora caerulea).[1] Following oral intake by humans, chrysin has lowbioavailability and rapidexcretion.[1] It is underbasic research to evaluate its safety and potentialbiological effects.[1]

Chrysin is an ingredient indietary supplements.[3] As of 2016, there was no clinical use of chrysin,[1] and no evidence for its effect ontestosterone levels.[4] In 2016, the USFood and Drug Administration did not recommend chrysin be included on the list of bulk drug substances that can be used incompounding under section 503A of theFederal Food, Drug, and Cosmetic Act.[5]

Occurrence

[edit]

A component in variousmedicinal plants (e.g.Scutellaria baicalensis), chrysin is adihydroxyflavone, a type offlavonoid.[6] It is also found inhoney,propolis, thepassion flowers,Passiflora caerulea andPassiflora incarnata, inOroxylum indicum,[2] carrots,[1]chamomile,[7] many fruits, and inmushrooms, such as the mushroomPleurotus ostreatus.[6] It isextracted from various plants,[1] such as the blue passion flower (Passiflora caerulea).[1]

The amount of chrysin in honey from various plant sources is about 0.2 mg per 100 g.[8] Chrysin is typically found at higher amounts in propolis than in honey.[9] A 2010 study found the amount of chrysin was 0.10 mg/kg in honeydew honey, and 5.3 mg/kg in forest honeys.[10] A 2010 study found the amount of chrysin in propolis was as much as 28 g/L.[10] A 2013 study found the amount of chrysin in various mushrooms from the island of Lesvos, Greece, varied between 0.17 mg/kg inLactarius deliciosus to 0.34 mg/kg inSuillus bellinii.[10]

Bioavailability

[edit]

The effects of chrysin are reliant on itsbioavailability andsolubility.[10] Following oral intake by humans, chrysin has low bioavailability and rapidexcretion.[1] As a result, it is poorly absorbed.[1]

A 1998 study determined that the highest amounts inplasma was from 12 to 64 nM.[10] As of 2015, theserum levels of chrysin have not been cited in the literature.[10] Following oral intake by humans, the bioavailability was reported to be from 0.003% to 0.02%.[10]

Oral and topical application

[edit]

There is insufficient information to determine how long chrysin has been used in pharmacycompounding.[11] Chrysin is used as an ingredient indietary supplements, but there is no information on systemic exposure fromtopical application.[3] As of 2016, there was no evidence to support any effect of oral chrysin ontestosterone levels,[4] or an any disease-modifying activity with oral or topical formulations.[12]

Safety

[edit]

A daily consumed amount of chrysin of 0.5 to 3 g is considered safe.[6] As of 2016, there was no toxicity attributable to chrysin inclinical trials oradverse event reporting.[13] As of 2016, clinical safety issues have not been identified.[14] As of 2016, nonclinical data suggest potential concerns.[14] In 2016, the USFood and Drug Administration did not recommend chrysin be included on the list of bulk drug substances that can be used in compounding under section 503A of theFederal Food, Drug, and Cosmetic Act based on consideration of the following criteria: (1) physicochemical characterization; (2) safety; (3) effectiveness; and (4) historical use of the substance in compounding.[5]

Research

[edit]

As of 2016, there is no evidence for chrysin being used in human clinical applications.[1] Research showed that orally administered chrysin does not have clinical activity as anaromatase inhibitor.[1][15]Nanoformulations ofpolyphenols, including chrysin, are made using various carrier methods, such asliposomes andnanocapsules.[16]

Bibliography

[edit]
  • Brave M (23 June 2016)."Chrysin"(PDF). Pharmacy Compounding Advisory Committee, Division of Oncology Products, US Food and Drug Administration. pp. 1–13. Archived fromthe original(PDF) on August 4, 2016.Public Domain This article incorporates text from this source, which is in thepublic domain.

References

[edit]
  1. ^abcdefghijkl"Chrysin: Compound Summary for CID 5281607". PubChem, National Center for Biotechnology Information, US National Institutes of Health. 14 July 2018.
  2. ^abMorissette M, Litim N, Di Paolo T (18 May 2017)."Chapter 2 – Natural Phytoestrogens: A Class of Promising Neuroprotective Agents for Parkinson Disease". In Brahmachari G (ed.).Discovery and Development of Neuroprotective Agents from Natural Products. Elsevier Science. p. 32.doi:10.1016/B978-0-12-809593-5.00002-1.ISBN 978-0-12-809769-4.
  3. ^abFDA 2016, p. 3.
  4. ^abFDA 2016, p. 8.
  5. ^abFDA 2016, p. 13.
  6. ^abcSamarghandian S, Farkhondeh T, Azimi-Nezhad M (2017)."Protective Effects of Chrysin Against Drugs and Toxic Agents".Dose-response.15 (2) 1559325817711782.doi:10.1177/1559325817711782.PMC 5484430.PMID 28694744.
  7. ^Zhandi, M; Ansari, M; Roknabadi, P; Zare Shahneh, A; Sharafi, M (2017). "Orally administered Chrysin improves post-thawed sperm quality and fertility of rooster".Reproduction in Domestic Animals.52 (6):1004–1010.doi:10.1111/rda.13014.ISSN 0936-6768.PMID 28695606.S2CID 28744455.
  8. ^Istasse T, Jacquet N, Berchem T, Haubruge E, Nguyen BK, Richel A (2016)."Extraction of Honey Polyphenols: Method Development and Evidence of Cis Isomerization".Analytical Chemistry Insights.11:49–57.doi:10.4137/ACI.S39739.PMC 4981221.PMID 27547032.
  9. ^Premratanachai P, Chanchao C (2014)."Review of the anticancer activities of bee products".Asian Pacific Journal of Tropical Biomedicine.4 (5):337–44.doi:10.12980/APJTB.4.2014C1262.PMC 3985046.PMID 25182716.
  10. ^abcdefgNabavi SF, Braidy N, Habtemariam S, Orhan IE, Daglia M, Manayi A, Gortzi O, Nabavi SM (2015). "Neuroprotective effects of chrysin: From chemistry to medicine".Neurochemistry International.90:224–31.doi:10.1016/j.neuint.2015.09.006.PMID 26386393.S2CID 24391203.
  11. ^FDA 2016, p. 11.
  12. ^FDA 2016, p. 9.
  13. ^FDA 2016, p. 10.
  14. ^abFDA 2016, p. 12.
  15. ^Saarinen N, Joshi SC, Ahotupa M, Li X, Ammälä J, Mäkelä S, Santti R (September 2001). "No evidence for the in vivo activity of aromatase-inhibiting flavonoids".The Journal of Steroid Biochemistry and Molecular Biology.78 (3):231–9.doi:10.1016/S0960-0760(01)00098-X.PMID 11595503.S2CID 25787862.
  16. ^Davatgaran-Taghipour Y, Masoomzadeh S, Farzaei MH, Bahramsoltani R, Karimi-Soureh Z, Rahimi R, Abdollahi M (2017)."Polyphenol nanoformulations for cancer therapy: experimental evidence and clinical perspective".International Journal of Nanomedicine.12:2689–2702.doi:10.2147/IJN.S131973.PMC 5388197.PMID 28435252.
Flavones and their conjugates
Aglycones
Monohydroxyflavone
Dihydroxyflavones
Trihydroxyflavones
Tetrahydroxyflavones
Pentahydroxyflavones
O-methylated flavones
Glycosides
of apigenin
of baicalein
of hypolaetin
of luteolin
Acetylated
Sulfated glycosides
Polymers
Drugs
CARTooltip Constitutive androstane receptor
PXRTooltip Pregnane X receptor
Retrieved from "https://en.wikipedia.org/w/index.php?title=Chrysin&oldid=1314727824"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp