Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Centering matrix

From Wikipedia, the free encyclopedia
Kind of matrix
icon
This articleneeds additional citations forverification. Please helpimprove this article byadding citations to reliable sources. Unsourced material may be challenged and removed.
Find sources: "Centering matrix" – news ·newspapers ·books ·scholar ·JSTOR
(August 2024) (Learn how and when to remove this message)

Inmathematics andmultivariate statistics, thecentering matrix[1] is asymmetric andidempotent matrix, which when multiplied with a vector has the same effect as subtracting themean of the components of the vector from every component of that vector.

Definition

[edit]

Thecentering matrix of sizen is defined as then-by-n matrix

Cn=In1nJn{\displaystyle C_{n}=I_{n}-{\tfrac {1}{n}}J_{n}}

whereIn{\displaystyle I_{n}\,} is theidentity matrix of sizen andJn{\displaystyle J_{n}} is ann-by-nmatrix of all 1's.

For example

C1=[0]{\displaystyle C_{1}={\begin{bmatrix}0\end{bmatrix}}},
C2=[1001]12[1111]=[12121212]{\displaystyle C_{2}=\left[{\begin{array}{rrr}1&0\\0&1\end{array}}\right]-{\frac {1}{2}}\left[{\begin{array}{rrr}1&1\\1&1\end{array}}\right]=\left[{\begin{array}{rrr}{\frac {1}{2}}&-{\frac {1}{2}}\\-{\frac {1}{2}}&{\frac {1}{2}}\end{array}}\right]} ,
C3=[100010001]13[111111111]=[231313132313131323]{\displaystyle C_{3}=\left[{\begin{array}{rrr}1&0&0\\0&1&0\\0&0&1\end{array}}\right]-{\frac {1}{3}}\left[{\begin{array}{rrr}1&1&1\\1&1&1\\1&1&1\end{array}}\right]=\left[{\begin{array}{rrr}{\frac {2}{3}}&-{\frac {1}{3}}&-{\frac {1}{3}}\\-{\frac {1}{3}}&{\frac {2}{3}}&-{\frac {1}{3}}\\-{\frac {1}{3}}&-{\frac {1}{3}}&{\frac {2}{3}}\end{array}}\right]}

Properties

[edit]

Given a column-vector,v{\displaystyle \mathbf {v} \,} of sizen, thecentering property ofCn{\displaystyle C_{n}\,} can be expressed as

Cnv=v(1nJn,1Tv)Jn,1{\displaystyle C_{n}\,\mathbf {v} =\mathbf {v} -({\tfrac {1}{n}}J_{n,1}^{\textrm {T}}\mathbf {v} )J_{n,1}}

whereJn,1{\displaystyle J_{n,1}} is acolumn vector of ones and1nJn,1Tv{\displaystyle {\tfrac {1}{n}}J_{n,1}^{\textrm {T}}\mathbf {v} } is the mean of the components ofv{\displaystyle \mathbf {v} \,}.

Cn{\displaystyle C_{n}\,} is symmetricpositive semi-definite.

Cn{\displaystyle C_{n}\,} isidempotent, so thatCnk=Cn{\displaystyle C_{n}^{k}=C_{n}}, fork=1,2,{\displaystyle k=1,2,\ldots }. Once the mean has been removed, it is zero and removing it again has no effect.

Cn{\displaystyle C_{n}\,} is singular. The effects of applying the transformationCnv{\displaystyle C_{n}\,\mathbf {v} } cannot be reversed.

Cn{\displaystyle C_{n}\,} has theeigenvalue 1 of multiplicityn − 1 and eigenvalue 0 of multiplicity 1.

Cn{\displaystyle C_{n}\,} has anullspace of dimension 1, along the vectorJn,1{\displaystyle J_{n,1}}.

Cn{\displaystyle C_{n}\,} is anorthogonal projection matrix. That is,Cnv{\displaystyle C_{n}\mathbf {v} } is a projection ofv{\displaystyle \mathbf {v} \,} onto the (n − 1)-dimensionalsubspace that is orthogonal to the nullspaceJn,1{\displaystyle J_{n,1}}. (This is the subspace of alln-vectors whose components sum to zero.)

The trace ofCn{\displaystyle C_{n}} isn(n1)/n=n1{\displaystyle n(n-1)/n=n-1}.

Application

[edit]

Although multiplication by the centering matrix is not a computationally efficient way of removing the mean from a vector, it is a convenient analytical tool. It can be used not only to remove the mean of a single vector, but also of multiple vectors stored in the rows or columns of anm-by-n matrixX{\displaystyle X}.

The left multiplication byCm{\displaystyle C_{m}} subtracts a corresponding mean value from each of then columns, so that each column of the productCmX{\displaystyle C_{m}\,X} has a zero mean. Similarly, the multiplication byCn{\displaystyle C_{n}} on the right subtracts a corresponding mean value from each of them rows, and each row of the productXCn{\displaystyle X\,C_{n}} has a zero mean.The multiplication on both sides creates a doubly centred matrixCmXCn{\displaystyle C_{m}\,X\,C_{n}}, whose row and column means are equal to zero.

The centering matrix provides in particular a succinct way to express thescatter matrix,S=(XμJn,1T)(XμJn,1T)T{\displaystyle S=(X-\mu J_{n,1}^{\mathrm {T} })(X-\mu J_{n,1}^{\mathrm {T} })^{\mathrm {T} }} of a data sampleX{\displaystyle X\,}, whereμ=1nXJn,1{\displaystyle \mu ={\tfrac {1}{n}}XJ_{n,1}} is thesample mean. The centering matrix allows us to express the scatter matrix more compactly as

S=XCn(XCn)T=XCnCnXT=XCnXT.{\displaystyle S=X\,C_{n}(X\,C_{n})^{\mathrm {T} }=X\,C_{n}\,C_{n}\,X\,^{\mathrm {T} }=X\,C_{n}\,X\,^{\mathrm {T} }.}

Cn{\displaystyle C_{n}} is thecovariance matrix of themultinomial distribution, in the special case where the parameters of that distribution arek=n{\displaystyle k=n}, andp1=p2==pn=1n{\displaystyle p_{1}=p_{2}=\cdots =p_{n}={\frac {1}{n}}}.

References

[edit]
  1. ^John I. Marden,Analyzing and Modeling Rank Data, Chapman & Hall, 1995,ISBN 0-412-99521-2, page 59.
Matrix classes
Explicitly constrained entries
Constant
Conditions oneigenvalues or eigenvectors
Satisfying conditions onproducts orinverses
With specific applications
Used instatistics
Used ingraph theory
Used in science and engineering
Related terms
Retrieved from "https://en.wikipedia.org/w/index.php?title=Centering_matrix&oldid=1285634160"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp