Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cayley transform

From Wikipedia, the free encyclopedia
Mathematical operation

Inmathematics, theCayley transform, named afterArthur Cayley, is any of a cluster of related things. As originally described byCayley (1846), the Cayley transform is a mapping betweenskew-symmetric matrices andspecial orthogonal matrices. The transform is ahomography used inreal analysis,complex analysis, andquaternionic analysis. In the theory ofHilbert spaces, the Cayley transform is a mapping betweenlinear operators (Nikolski 1988).

Real homography

[edit]

A simple example of a Cayley transform can be done on thereal projective line. The Cayley transform here will permute the elements of {1, 0, −1, ∞} in sequence. For example, it maps thepositive real numbers to the interval [−1, 1]. Thus the Cayley transform is used to adaptLegendre polynomials for use with functions on the positive real numbers withLegendre rational functions.

As a realhomography, points are described withprojective coordinates, and the mapping is

[y, 1]=[x1x+1, 1][x1, x+1]=[x, 1](1111).{\displaystyle [y,\ 1]=\left[{\frac {x-1}{x+1}},\ 1\right]\thicksim [x-1,\ x+1]=[x,\ 1]{\begin{pmatrix}1&1\\-1&1\end{pmatrix}}.}

Complex homography

[edit]
Cayley transform of upper complex half-plane to unit disk

On theupper half of thecomplex plane, the Cayley transform is:[1][2]

f(z)=ziz+i.{\displaystyle f(z)={\frac {z-i}{z+i}}.}

Since{,1,1}{\displaystyle \{\infty ,1,-1\}} is mapped to{1,i,i}{\displaystyle \{1,-i,i\}}, andMöbius transformations permute thegeneralised circles in thecomplex plane,f{\displaystyle f} maps the real line to theunit circle. Furthermore, sincef{\displaystyle f} is ahomeomorphism andi{\displaystyle i} is taken to 0 byf{\displaystyle f}, the upper half-plane is mapped to theunit disk.

In terms of themodels ofhyperbolic geometry, this Cayley transform relates thePoincaré half-plane model to thePoincaré disk model.

In electrical engineering the Cayley transform has been used to map areactance half-plane to theSmith chart used forimpedance matching of transmission lines.

Quaternion homography

[edit]

In thefour-dimensional space ofquaternionsa+bi+cj+dk{\displaystyle a+b{\vec {i}}+c{\vec {j}}+d{\vec {k}}}, theversors

u(θ,r)=cosθ+rsinθ{\displaystyle u(\theta ,r)=\cos \theta +r\sin \theta } form the unit3-sphere.

Since quaternions are non-commutative, elements of itsprojective line have homogeneous coordinates writtenU[a,b]{\displaystyle U[a,b]} to indicate that the homogeneous factor multiplies on the left. The quaternion transform is

f(u,q)=U[q,1](11uu)=U[qu, q+u]U[(q+u)1(qu), 1].{\displaystyle f(u,q)=U[q,1]{\begin{pmatrix}1&1\\-u&u\end{pmatrix}}=U[q-u,\ q+u]\sim U[(q+u)^{-1}(q-u),\ 1].}

The real and complex homographies described above are instances of the quaternion homography whereθ{\displaystyle \theta } is zero orπ/2{\displaystyle \pi /2}, respectively.Evidently the transform takesu01{\displaystyle u\to 0\to -1} and takesu1{\displaystyle -u\to \infty \to 1}.

Evaluating this homography atq=1{\displaystyle q=1} maps the versoru{\displaystyle u} into its axis:

f(u,1)=(1+u)1(1u)=(1+u)(1u)/|1+u|2.{\displaystyle f(u,1)=(1+u)^{-1}(1-u)=(1+u)^{*}(1-u)/|1+u|^{2}.}

But|1+u|2=(1+u)(1+u)=2+2cosθ,and(1+u)(1u)=2rsinθ.{\displaystyle |1+u|^{2}=(1+u)(1+u^{*})=2+2\cos \theta ,\quad {\text{and}}\quad (1+u^{*})(1-u)=-2r\sin \theta .}

Thusf(u,1)=rsinθ1+cosθ=rtanθ2.{\displaystyle f(u,1)=-r{\frac {\sin \theta }{1+\cos \theta }}=-r\tan {\frac {\theta }{2}}.}

In this form the Cayley transform has been described as a rational parametrization of rotation: Lett=tanϕ/2{\displaystyle t=\tan \phi /2} in the complex number identity[3]

eiφ=1ti1+ti{\displaystyle e^{-i\varphi }={\frac {1-ti}{1+ti}}}

where the right hand side is the transform ofti{\displaystyle ti} and the left hand side represents the rotation of the plane by negativeϕ{\displaystyle \phi } radians.

Inverse

[edit]

Letu=cosθrsinθ=u1.{\displaystyle u^{*}=\cos \theta -r\sin \theta =u^{-1}.} Since

(11uu) (1u1u) = (2002)  (1001) ,{\displaystyle {\begin{pmatrix}1&1\\-u&u\end{pmatrix}}\ {\begin{pmatrix}1&-u^{*}\\1&u^{*}\end{pmatrix}}\ =\ {\begin{pmatrix}2&0\\0&2\end{pmatrix}}\ \sim \ {\begin{pmatrix}1&0\\0&1\end{pmatrix}}\ ,}

where the equivalence is in theprojective linear group over quaternions, theinverse off(u,1){\displaystyle f(u,1)} is

U[p,1](1u1u) = U[p+1, (1p)u]U[u(1p)1(p+1), 1].{\displaystyle U[p,1]{\begin{pmatrix}1&-u^{*}\\1&u^{*}\end{pmatrix}}\ =\ U[p+1,\ (1-p)u^{*}]\sim U[u(1-p)^{-1}(p+1),\ 1].}

Since homographies arebijections,f1(u,1){\displaystyle f^{-1}(u,1)} maps the vector quaternions to the 3-sphere of versors. As versors represent rotations in 3-space, the homographyf1{\displaystyle f^{-1}} produces rotations from the ball inR3{\displaystyle \mathbb {R} ^{3}}.

Matrix map

[edit]

Amongn×nsquare matrices over thereals, withI theidentity matrix, letA be anyskew-symmetric matrix (so thatAT = −A).

ThenI + A isinvertible, and the Cayley transform

Q=(IA)(I+A)1{\displaystyle Q=(I-A)(I+A)^{-1}\,\!}

produces anorthogonal matrix,Q (so thatQTQ =I). The matrix multiplication in the definition ofQ above is commutative, soQ can be alternatively defined asQ=(I+A)1(IA){\displaystyle Q=(I+A)^{-1}(I-A)}. In fact,Q must have determinant +1, so is special orthogonal.

Conversely, letQ be any orthogonal matrix which does not have −1 as aneigenvalue; then

A=(IQ)(I+Q)1{\displaystyle A=(I-Q)(I+Q)^{-1}\,\!}

is a skew-symmetric matrix. (See also:Involution.) The condition onQ automatically excludes matrices with determinant −1, but also excludes certain special orthogonal matrices.

However, any rotation (special orthogonal) matrixQ can be written as

Q=((IA)(I+A)1)2{\displaystyle Q={\bigl (}(I-A)(I+A)^{-1}{\bigr )}^{2}}

for some skew-symmetric matrixA; more generally any orthogonal matrixQ can be written as

Q=E(IA)(I+A)1{\displaystyle Q=E(I-A)(I+A)^{-1}}

for some skew-symmetric matrixA and some diagonal matrixE with ±1 as entries.[4]

A slightly different form is also seen,[5][6] requiring different mappings in each direction,

Q=(IA)1(I+A),A=(QI)(Q+I)1.{\displaystyle {\begin{aligned}Q&=(I-A)^{-1}(I+A),\\[5mu]A&=(Q-I)(Q+I)^{-1}.\end{aligned}}}

The mappings may also be written with the order of the factors reversed;[7][8] however,A always commutes with (μI ± A)−1, so the reordering does not affect the definition.

Examples

[edit]

In the 2×2 case, we have

[0tanθ2tanθ20][cosθsinθsinθcosθ].{\displaystyle {\begin{bmatrix}0&\tan {\frac {\theta }{2}}\\-\tan {\frac {\theta }{2}}&0\end{bmatrix}}\leftrightarrow {\begin{bmatrix}\cos \theta &-\sin \theta \\\sin \theta &\cos \theta \end{bmatrix}}.}

The 180°rotation matrix, −I, is excluded, though it is the limit as tan θ2 goes to infinity.

In the 3×3 case, we have

[0zyz0xyx0]1K[w2+x2y2z22(xywz)2(wy+xz)2(xy+wz)w2x2+y2z22(yzwx)2(xzwy)2(wx+yz)w2x2y2+z2],{\displaystyle {\begin{bmatrix}0&z&-y\\-z&0&x\\y&-x&0\end{bmatrix}}\leftrightarrow {\frac {1}{K}}{\begin{bmatrix}w^{2}+x^{2}-y^{2}-z^{2}&2(xy-wz)&2(wy+xz)\\2(xy+wz)&w^{2}-x^{2}+y^{2}-z^{2}&2(yz-wx)\\2(xz-wy)&2(wx+yz)&w^{2}-x^{2}-y^{2}+z^{2}\end{bmatrix}},}

whereK = w2 + x2 + y2 + z2, and wherew = 1. This we recognize as the rotation matrix corresponding toquaternion

w+ix+jy+kz{\displaystyle w+\mathbf {i} x+\mathbf {j} y+\mathbf {k} z\,\!}

(by a formula Cayley had published the year before), except scaled so thatw = 1 instead of the usual scaling so thatw2 + x2 + y2 + z2 = 1. Thus vector (x,y,z) is the unit axis of rotation scaled by tan θ2. Again excluded are 180° rotations, which in this case are allQ which aresymmetric (so thatQT =Q).

Other matrices

[edit]

One can extend the mapping tocomplex matrices by substituting "unitary" for "orthogonal" and "skew-Hermitian" for "skew-symmetric", the difference being that the transpose (·T) is replaced by theconjugate transposeH). This is consistent with replacing the standard realinner product with the standard complex inner product. In fact, one may extend the definition further with choices ofadjoint other than transpose or conjugate transpose.

Formally, the definition only requires some invertibility, so one can substitute forQ any matrixM whose eigenvalues do not include −1. For example,

[0aabc00b000][12a2c012b001].{\displaystyle {\begin{bmatrix}0&-a&ab-c\\0&0&-b\\0&0&0\end{bmatrix}}\leftrightarrow {\begin{bmatrix}1&2a&2c\\0&1&2b\\0&0&1\end{bmatrix}}.}

Note thatA is skew-symmetric (respectively, skew-Hermitian) if and only ifQ is orthogonal (respectively, unitary) with no eigenvalue −1.

Operator map

[edit]

An infinite-dimensional version of aninner product space is aHilbert space, and one can no longer speak ofmatrices. However, matrices are merely representations oflinear operators, and these can be used. So, generalizing both the matrix mapping and the complex plane mapping, one may define a Cayley transform of operators.[9]

U=(AiI)(A+iI)1A=i(I+U)(IU)1{\displaystyle {\begin{aligned}U&{}=(A-\mathbf {i} I)(A+\mathbf {i} I)^{-1}\\A&{}=\mathbf {i} (I+U)(I-U)^{-1}\end{aligned}}}

Here the domain ofU, dom U, is (A+iI) dom A. Seeself-adjoint operator for further details.

See also

[edit]

References

[edit]
  1. ^Robert Everist Green &Steven G. Krantz (2006)Function Theory of One Complex Variable, page 189,Graduate Studies in Mathematics #40,American Mathematical SocietyISBN 9780821839621
  2. ^Erwin Kreyszig (1983)Advanced Engineering Mathematics, 5th edition, page 611, WileyISBN 0471862517
  3. ^SeeTangent half-angle formula
  4. ^Gallier, Jean (2006). "Remarks on the Cayley Representation of Orthogonal Matrices and on Perturbing the Diagonal of a Matrix to Make it Invertible".arXiv:math/0606320.
    As described by Gallier, the first of these results is a sharpened variant ofWeyl, Hermann (1946).The Classical Groups (2nd ed.). Princeton University Press. Lemma 2.10.D, p. 60.

    The second appeared as an exercise inBellman, Richard (1960).Introduction to Matrix Analysis. SIAM Publications. §6.4 exercise 11, p. 91–92.

  5. ^Golub, Gene H.;Van Loan, Charles F. (1996),Matrix Computations (3rd ed.),Johns Hopkins University Press,ISBN 978-0-8018-5414-9
  6. ^F. Chong (1971) "A Geometric Note on the Cayley Transform", pages 84,5 inA Spectrum of Mathematics: Essays Presented to H. G. Forder,John C. Butcher editor,Auckland University Press
  7. ^Courant, Richard;Hilbert, David (1989),Methods of Mathematical Physics, vol. 1 (1st English ed.), New York: Wiley-Interscience, pp. 536, 7,ISBN 978-0-471-50447-4 Ch.VII, §7.2
  8. ^Howard Eves (1966)Elementary Matrix Theory, § 5.4A Cayley’s Construction of Real Orthogonal Matrices, pages 365–7,Allyn & Bacon
  9. ^Rudin 1991, p. 356-357 §13.17.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cayley_transform&oldid=1309371869"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp