Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cauchy condensation test

From Wikipedia, the free encyclopedia
Convergence test for infinite series
Not to be confused withCauchy's convergence test.
Part of a series of articles about
Calculus
abf(t)dt=f(b)f(a){\displaystyle \int _{a}^{b}f'(t)\,dt=f(b)-f(a)}

Inmathematics, theCauchy condensation test, named afterAugustin-Louis Cauchy, is a standardconvergence test forinfinite series. For anon-increasingsequencef(n){\displaystyle f(n)} of non-negativereal numbers, the seriesn=1f(n){\textstyle \sum \limits _{n=1}^{\infty }f(n)}converges if and only if the "condensed" seriesn=02nf(2n){\textstyle \sum \limits _{n=0}^{\infty }2^{n}f(2^{n})} converges. Moreover, if they converge, the sum of the condensed series is no more than twice as large as the sum of the original.

Estimate

[edit]

The Cauchy condensation test follows from the stronger estimate,n=1f(n)n=02nf(2n) 2n=1f(n),{\displaystyle \sum _{n=1}^{\infty }f(n)\leq \sum _{n=0}^{\infty }2^{n}f(2^{n})\leq \ 2\sum _{n=1}^{\infty }f(n),}which should be understood as aninequality ofextended real numbers. The essential thrust of aproof follows, patterned afterOresme's proof of thedivergence of theharmonic series.

To see the first inequality, the terms of the original series are rebracketed into runs whose lengths arepowers of two, and then each run is bounded above by replacing each term by the largest term in that run. That term is always the first one, since by assumption the terms are non-increasing.n=1f(n)=f(1)+f(2)+f(3)+f(4)+f(5)+f(6)+f(7)+=f(1)+(f(2)+f(3))+(f(4)+f(5)+f(6)+f(7))+f(1)+(f(2)+f(2))+(f(4)+f(4)+f(4)+f(4))+=f(1)+2f(2)+4f(4)+=n=02nf(2n){\displaystyle {\begin{array}{rcccccccl}\displaystyle \sum \limits _{n=1}^{\infty }f(n)&=&f(1)&+&f(2)+f(3)&+&f(4)+f(5)+f(6)+f(7)&+&\cdots \\&=&f(1)&+&{\Big (}f(2)+f(3){\Big )}&+&{\Big (}f(4)+f(5)+f(6)+f(7){\Big )}&+&\cdots \\&\leq &f(1)&+&{\Big (}f(2)+f(2){\Big )}&+&{\Big (}f(4)+f(4)+f(4)+f(4){\Big )}&+&\cdots \\&=&f(1)&+&2f(2)&+&4f(4)&+&\cdots =\sum \limits _{n=0}^{\infty }2^{n}f(2^{n})\end{array}}}

To see the second inequality, these two series are again rebracketed into runs of power of two length, but "offset" as shown below, so that the run of2n=1f(n){\textstyle 2\sum _{n=1}^{\infty }f(n)} whichbegins withf(2n){\textstyle f(2^{n})} lines up with the end of the run ofn=02nf(2n){\textstyle \sum _{n=0}^{\infty }2^{n}f(2^{n})} whichends withf(2n){\textstyle f(2^{n})}, so that the former stays always "ahead" of the latter.n=02nf(2n)=f(1)+(f(2)+f(2))+(f(4)+f(4)+f(4)+f(4))+=(f(1)+f(2))+(f(2)+f(4)+f(4)+f(4))+(f(1)+f(1))+(f(2)+f(2))+(f(3)+f(3))+=2n=1f(n){\displaystyle {\begin{aligned}\sum _{n=0}^{\infty }2^{n}f(2^{n})&=f(1)+{\Big (}f(2)+f(2){\Big )}+{\Big (}f(4)+f(4)+f(4)+f(4){\Big )}+\cdots \\&={\Big (}f(1)+f(2){\Big )}+{\Big (}f(2)+f(4)+f(4)+f(4){\Big )}+\cdots \\&\leq {\Big (}f(1)+f(1){\Big )}+{\Big (}f(2)+f(2){\Big )}+{\Big (}f(3)+f(3){\Big )}+\cdots =2\sum _{n=1}^{\infty }f(n)\end{aligned}}}

Visualization of the above argument.Partial sums of the seriesf(n){\textstyle \sum f(n)},2nf(2n){\textstyle \sum 2^{n}f(2^{n})}, and2f(n){\textstyle 2\sum f(n)} are shown overlaid from left to right.

Integral comparison

[edit]

The "condensation" transformationf(n)2nf(2n){\textstyle f(n)\rightarrow 2^{n}f(2^{n})} recalls theintegral variable substitutionxex{\textstyle x\rightarrow e^{x}} yieldingf(x)dxexf(ex)dx{\textstyle f(x)\,\mathrm {d} x\rightarrow e^{x}f(e^{x})\,\mathrm {d} x}.

Pursuing this idea, theintegral test for convergence gives us, in the case ofmonotonef{\displaystyle f}, thatn=1f(n){\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only if1f(x)dx{\displaystyle \displaystyle \int _{1}^{\infty }f(x)\,\mathrm {d} x} converges. The substitutionx2x{\textstyle x\rightarrow 2^{x}} yields the integrallog2 22xf(2x)dx{\displaystyle \displaystyle \log 2\ \int _{2}^{\infty }\!2^{x}f(2^{x})\,\mathrm {d} x}. We then notice thatlog2 22xf(2x)dx<log2 02xf(2x)dx{\displaystyle \displaystyle \log 2\ \int _{2}^{\infty }\!2^{x}f(2^{x})\,\mathrm {d} x<\log 2\ \int _{0}^{\infty }\!2^{x}f(2^{x})\,\mathrm {d} x}, where the right hand side comes from applying the integral test to the condensed seriesn=02nf(2n){\textstyle \sum \limits _{n=0}^{\infty }2^{n}f(2^{n})}. Therefore,n=1f(n){\textstyle \sum \limits _{n=1}^{\infty }f(n)} converges if and only ifn=02nf(2n){\textstyle \sum \limits _{n=0}^{\infty }2^{n}f(2^{n})} converges.

Examples

[edit]

The test can be useful for series wheren appears as in a denominator inf. For the most basic example of this sort, the harmonic seriesn=11/n{\textstyle \sum _{n=1}^{\infty }1/n} is transformed into the series1{\textstyle \sum 1}, which clearly diverges.

For a more complex example, takef(n):=na(logn)b(loglogn)c.{\displaystyle f(n):=n^{-a}(\log n)^{-b}(\log \log n)^{-c}.}

Here the series definitely converges fora > 1, and diverges fora < 1. Whena = 1, the condensation transformation gives the seriesnb(logn)c.{\displaystyle \sum n^{-b}(\log n)^{-c}.}

Thelogarithms "shift to the left". So whena = 1, we have convergence forb > 1, divergence forb < 1. Whenb = 1 the value ofc enters.

This result readily generalizes: the condensation test, applied repeatedly, can be used to show that fork=1,2,3,{\displaystyle k=1,2,3,\ldots }, the generalized Bertrand seriesnN1nlognloglognlog(k1)n(logkn)α(N=expk(0)+1){\displaystyle \sum _{n\geq N}{\frac {1}{n\cdot \log n\cdot \log \log n\cdots \log ^{\circ (k-1)}n\cdot (\log ^{\circ k}n)^{\alpha }}}\quad \quad (N=\lfloor \exp ^{\circ k}(0)\rfloor +1)} converges forα>1{\displaystyle \alpha >1} and diverges for0<α1{\displaystyle 0<\alpha \leq 1}.[1] Herefm{\displaystyle f^{\circ m}} denotes themthiterate of a functionf{\displaystyle f}, so thatfm(x):={f(f(m1)(x)),m=1,2,3,;x,m=0.{\displaystyle f^{\circ m}(x):={\begin{cases}f(f^{\circ (m-1)}(x)),&m=1,2,3,\ldots ;\\x,&m=0.\end{cases}}}The lower limit of the sum,N{\displaystyle N}, was chosen so that all terms of the series are positive. Notably, these series provide examples of infinite sums that converge or diverge arbitrarily slowly. For instance, in the case ofk=2{\displaystyle k=2} andα=1{\displaystyle \alpha =1}, the partial sum exceeds 10 only after1010100{\displaystyle 10^{10^{100}}}(agoogolplex) terms; yet the series diverges nevertheless.

Schlömilch's generalization

[edit]

A generalization of the condensation test was given byOskar Schlömilch.[2] Letu(n) be a strictly increasing sequence of positiveintegers such that the ratio of successivedifferences is bounded: there is a positive real numberN, for whichΔu(n)Δu(n1) = u(n+1)u(n)u(n)u(n1) < N  for all n.{\displaystyle {\Delta u(n) \over \Delta u(n{-}1)}\ =\ {u(n{+}1)-u(n) \over u(n)-u(n{-}1)}\ <\ N\ {\text{ for all }}n.}

Then, provided thatf(n){\displaystyle f(n)} meets the same preconditions as inCauchy's convergence test, the convergence of the seriesn=1f(n){\textstyle \sum _{n=1}^{\infty }f(n)} is equivalent to the convergence ofn=0Δu(n)f(u(n)) = n=0(u(n+1)u(n))f(u(n)).{\displaystyle \sum _{n=0}^{\infty }{\Delta u(n)}\,f(u(n))\ =\ \sum _{n=0}^{\infty }{\Big (}u(n{+}1)-u(n){\Big )}f(u(n)).}

Takingu(n)=2n{\textstyle u(n)=2^{n}} so thatΔu(n)=u(n+1)u(n)=2n{\textstyle \Delta u(n)=u(n{+}1)-u(n)=2^{n}}, the Cauchy condensation test emerges as a special case.

References

[edit]
  1. ^Rudin, Walter (1976).Principles of Mathematical Analysis. New York: McGraw-Hill. pp. 62–63.ISBN 0-07-054235-X.
  2. ^Elijah Liflyand, Sergey Tikhonov, & Maria Zeltse (2012)Extending tests for convergence of number series page 7/28 viaBrandeis University
  • Bonar, Khoury (2006).Real Infinite Series. Mathematical Association of America.ISBN 0-88385-745-6.

External links

[edit]
Precalculus
Limits
Differential calculus
Integral calculus
Vector calculus
Multivariable calculus
Sequences and series
Special functions
and numbers
History of calculus
Lists
Integrals
Miscellaneous topics
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cauchy_condensation_test&oldid=1318488688"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp