Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Catechol

From Wikipedia, the free encyclopedia
Organic compound (C6H4(OH)2); benzene with two adjacent –OH groups
Not to be confused withCatechin, also sometimes called catechol.
Catechol
Skeletal formula
Pyrocatechol
Ball-and-stick model
Ball-and-stick model
Names
Preferred IUPAC name
Benzene-1,2-diol[1]
Other names
Pyrocatechol[1]
1,2-Benzenediol
2-Hydroxyphenol
1,2-Dihydroxybenzene
o-Benzenediol
o-Dihydroxybenzene
Identifiers
3D model (JSmol)
471401
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard100.004.025Edit this at Wikidata
EC Number
  • 204-427-5
2936
KEGG
RTECS number
  • UX1050000
UNII
  • Oc1c(O)cccc1
Properties
C6H6O2
Molar mass110.112 g·mol−1
Appearancewhite to brown feathery crystals
Odorfaint, phenolic odor
Density1.344 g/cm3, solid
Melting point105 °C (221 °F; 378 K)
Boiling point245.5 °C (473.9 °F; 518.6 K) (sublimes)
312 g/L at 20 °C[2]
Solubilityvery soluble inpyridine
soluble inchloroform,benzene,CCl4,ether,ethyl acetate
logP0.88
Vapor pressure20 Pa (20 °C)
Acidity (pKa)9.45, 12.8
−6.876×10−5 cm3/mol
1.604
2.62±0.03 D[3]
Structure
monoclinic
Thermochemistry
−354.1 kJ·mol−1
Enthalpy of fusionfHfus)
22.8 kJ·mol−1 (at melting point)
Hazards
GHS labelling:
GHS06: ToxicGHS08: Health hazardGHS05: Corrosive
Danger
H301,H311,H315,H317,H318,H332,H341
P261,P301,P302,P305,P310,P312,P330,P331,P338,P351,P352
NFPA 704 (fire diamond)
Flash point127 °C (261 °F; 400 K)
510 °C (950 °F; 783 K)
Explosive limits1.4%–?[4]
Lethal dose or concentration (LD, LC):
300 mg/kg (rat, oral)
NIOSH (US health exposure limits):
PEL (Permissible)
none[4]
REL (Recommended)
TWA 5 ppm (20 mg/m3) [skin][4]
IDLH (Immediate danger)
N.D.[4]
Safety data sheet (SDS)Sigma-Aldrich
Related compounds
Resorcinol
Hydroquinone
Related compounds
1,2-benzoquinone
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Catechol (/ˈkætɪɒl/ or/ˈkætɪkɒl/), also known aspyrocatechol or1,2-dihydroxybenzene, is an organic compound with the molecular formulaC6H4(OH)2. It is theorthoisomer of the three isomericbenzenediols. This colorless compound occurs naturally in trace amounts. It was first discovered bydestructive distillation of the plant extractcatechin. About 20,000 tonnes of catechol are now synthetically produced annually as a commodity organic chemical, mainly as a precursor to pesticides, flavors, and fragrances. Small amounts of catechol occur infruits andvegetables.[2]

Isolation and synthesis

[edit]

Catechol was first isolated in 1839 by Edgar Hugo Emil Reinsch (1809–1884) bydistilling it from the solidtannic preparationcatechin, which is the residuum ofcatechu, the boiled or concentrated juice ofMimosa catechu (Acacia catechu).[5] Upon heating catechin above its decomposition point, a substance that Reinsch first namedBrenz-Katechusäure (burned catechu acid)sublimated as a whiteefflorescence. This was a thermal decomposition product of theflavanols in catechin. In 1841, bothWackenroder and Zwenger independently rediscovered catechol; in reporting on their findings,Philosophical Magazine coined the namepyrocatechin.[6] By 1852,Erdmann realized that catechol wasbenzene with two oxygen atoms added to it; in 1867,August Kekulé realized that catechol was adiol of benzene, so by 1868, catechol was listed aspyrocatechol.[7] In 1879, theJournal of the Chemical Society recommended that catechol be called "catechol", and in the following year, it was listed as such.[8]

Catechol has since been shown to occur in free form naturally inkino and inbeechwood tar. Itssulfonic acid has been detected in theurine of horses and humans.[9]

Catechol is produced industrially by thehydroxylation ofphenol usinghydrogen peroxide.[2]

C6H5OH + H2O2 → C6H4(OH)2 + H2O

It can be produced by reaction ofsalicylaldehyde with base and hydrogen peroxide (Dakin oxidation),[10] as well as thehydrolysis of 2-substituted phenols, especially2-chlorophenol, with hot aqueous solutions containing alkali metal hydroxides. Its methyl ether derivative,guaiacol, converts to catechol via hydrolysis of theCH3−O bond as promoted byhydroiodic acid (HI).[10]

Reactions

[edit]

Like some other difunctional benzene derivatives, catechol readilycondenses to formheterocyclic compounds. For example, usingphosphorus trichloride orphosphorus oxychloride gives the cyclic chlorophosphonite or chlorophosphonate, respectively;sulfuryl chloride gives thesulfate; andphosgene (COCl2) gives thecarbonate:[11]

C6H4(OH)2 + XCl2 → C6H4(O2X) + 2 HCl where X = PCl or POCl;SO2; CO

Basic solutions of catechol react with iron(III) to give the red[Fe(C6H4O2)3]3−.Ferric chloride gives a green coloration with the aqueous solution, while the alkaline solution rapidly changes to a green and finally to a black color on exposure to the air.[12] Iron-containingdioxygenaseenzymescatalyze thecleavage of catechol.

Redox chemistry

[edit]

Catechols convert to the semiquinone radical. AtpH = 7, this conversion occurs at 100 mV:[citation needed]

C6H4(OH)2 → C6H4(O)(OH) + ½ H2

The semiquinone radical can be reduced to the catecholate dianion, the potential being dependent on pH:

C6H4(O)(OH) + e → [C6H4O2]2− + H+

Catechol is produced by a reversible two-electron, two-protonreduction of1,2-benzoquinone (E0 = +795 mV vsSHE;Em (at pH 7) = +380 mV vs SHE).[13]

Theredox series catecholate dianion, monoanionic semiquinonate, and benzoquinone are collectively calleddioxolenes. Dioxolenes can function asligands for metal ions.[14]

Catechol derivatives

[edit]

Catechol derivatives are found widely in nature. They often arise by hydroxylation of phenols.[16]Arthropodcuticle consists ofchitin linked by a catecholmoiety toprotein. The cuticle may be strengthened bycross-linking (tanning andsclerotization), in particular, ininsects, and of course bybiomineralization.[17]

The synthetic derivative4-tert-butylcatechol is used as anantioxidant andpolymerization inhibitor.

Uses

[edit]

Approximately 50% of the synthetic catechol is consumed in the production ofpesticides, the remainder being used as a precursor to fine chemicals such as perfumes and pharmaceuticals.[2] It is a common building block inorganic synthesis.[18] Several industrially significantflavors andfragrances are prepared starting from catechol.Guaiacol is prepared bymethylation of catechol and is then converted tovanillin on a scale of about 10M kg per year (1990). The related monoethyl ether of catechol,guethol, is converted toethylvanillin, a component ofchocolate confectioneries. 3-trans-Isocamphylcyclohexanol, widely used as a replacement forsandalwood oil, is prepared from catechol via guaiacol andcamphor.Piperonal, a flowery scent, is prepared from the methylene diether of catechol followed by condensation withglyoxal anddecarboxylation.[19]

Josef Maria Eder published in 1879 his findings on the use of catechol as a black-and-whitephotographic developer,[20][21] but, except for some special purpose applications, its use is largely historical. It is rumored to have been used briefly inEastman Kodak's HC-110 developer and Anchell supposes it to be a component inTetenal's Neofin Blau developer.[22] It is a key component of Finol from Moersch Photochemie in Germany.[citation needed] Modern catechol developing was pioneered by noted photographerSandy King, whose "PyroCat" formulation is popular among modern black-and-white film photographers.[23] King's work has since inspired further 21st-century development by others such as Jay De Fehr with Hypercat and Obsidian Acqua developers, and others.[22]

Nomenclature

[edit]

Although rarely encountered, the officially "preferredIUPAC name" (PIN) of catechol isbenzene-1,2-diol.[24] The trivial namepyrocatechol is a retained IUPAC name, according to the1993 Recommendations for the Nomenclature of Organic Chemistry.[25][26]

See also

[edit]

References

[edit]
  1. ^ab"Front Matter".Nomenclature of Organic Chemistry: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge:The Royal Society of Chemistry. 2014. p. 691.doi:10.1039/9781849733069-FP001.ISBN 978-0-85404-182-4.
  2. ^abcdFiege, Helmut; Voges, Heinz-Werner; Hamamoto, Toshikazu; Umemura, Sumio; Iwata, Tadao; Miki, Hisaya; Fujita, Yasuhiro; Buysch, Hans-Josef; Garbe, Dorothea; Paulus, Wilfried (2000), "Phenol Derivatives",Ullmann's Encyclopedia of Industrial Chemistry,doi:10.1002/14356007.a19_313,ISBN 978-3-527-30385-4
  3. ^Lander, John J.; Svirbely, W. J. (1945). "The Dipole Moments of Catechol, Resorcinol and Hydroquinone".Journal of the American Chemical Society.67 (2):322–324.Bibcode:1945JAChS..67..322L.doi:10.1021/ja01218a051.
  4. ^abcdNIOSH Pocket Guide to Chemical Hazards."#0109".National Institute for Occupational Safety and Health (NIOSH).
  5. ^Hugo Reinsch (1839)"Einige Bemerkungen über Catechu" (Some observations about catechu),Repertorium für die Pharmacie,68 : 49-58. Reinsch describes the preparation of catechol on p. 56:"Bekanntlich wird die Katechusäure bei der Destillation zerstört, während sich ein geringer Theil davon als krystallinischer Anflug sublimirt, welcher aber noch nicht näher untersucht worden ist. Diese Säure ist vielleicht dieselbe, welche ich bei der zerstörenden Destillation des Katechus erhalten; … " (As is well known, catechu acid is destroyed by distillation, while a small portion of it sublimates as a crystalline efflorescence, which however has still not been closely examined. This acid is perhaps the same one, which I obtained by destructive distillation of catechu; … ). On p. 58, Reinsch names the new compound:"Die Eigenschaften dieser Säure sind so bestimmt, dass man sie füglich als eine eigenthümliche Säure betrachten und sie mit dem Namen Brenz-Katechusäure belegen kann." (The properties of this acid are so definite, that one can regard it justifiably as a strange acid and give it the name "burned catechu acid".)
  6. ^See:
  7. ^See:
    • Rudolf Wagner (1852)"Ueber die Farbstoffe des Gelbholzes (Morus tinctoria.)" (On the coloring matter of Dyer's mulberry (Morus tinctoria.)),Journal für praktische Chemie,55 : 65-76. See p. 65.
    • August Kekulé (1867) "Ueber die Sulfosäuren des Phenols" (On the sulfonates of phenol)Zeitschrift für Chemie, new series,3 : 641–646;see p. 643.
    • Joseph Alfred Naquet, with William Cortis, trans. and Thomas Stevenson, ed.,Principles of Chemistry, founded on Modern Theories, (London, England: Henry Renshaw, 1868),p. 657. See also p. 720.
  8. ^See:
    • In 1879, the Publication Committee of theJournal of the Chemical Society issued instructions to its abstractors to "Distinguish all alcohols, i.e., hydroxyl-derivations of hydrocarbons, by names ending inol, e.g., quinol, catechol, … " See: Alfred H. Allen (June 20, 1879)"Nomenclature of organic bodies,"English Mechanic and World of Science,29 (743) : 369.
    • William Allen Miller, ed.,Elements of Chemistry: Theoretical and Practical, Part III: Chemistry of Carbon Compounds or Organic Chemistry, Section I …, 5th ed. (London, England: Longmans, Green and Co., 1880),p.524.
  9. ^Zheng, L. T.; Ryu, G. M.; Kwon, B. M.; Lee, W. H.; Suk, K. (2008). "Anti-inflammatory effects of catechols in lipopolysaccharide-stimulated microglia cells: Inhibition of microglial neurotoxicity".European Journal of Pharmacology.588 (1):106–13.doi:10.1016/j.ejphar.2008.04.035.PMID 18499097.
  10. ^abH. D. Dakin, H. T. Clarke, E. R. Taylor (1923). "Catechol".Organic Syntheses.3: 28.doi:10.15227/orgsyn.003.0028.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  11. ^R. S. Hanslick, W. F. Bruce, A. Mascitti (1953). "o-Phenylene Carbonate".Org. Synth.33: 74.doi:10.15227/orgsyn.033.0074.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  12. ^Anderson, Bryan F.; Buckingham, David A.; Robertson, Glen B.; Webb, John; Murray, Keith S.; Clark, Paul E. (1976)."Models for the bacterial iron-transport chelate enterochelin".Nature.262 (5570):722–724.Bibcode:1976Natur.262..722A.doi:10.1038/262722a0.PMID 134287.S2CID 3045676.
  13. ^Schweigert, Nina;Zehnder, Alexander J. B.; Eggen, Rik I. L. (2001). "Chemical properties of catechols and their molecular modes of toxic action in cells, from microorganisms to mammals. Minireview".Environmental Microbiology.3 (2):81–91.doi:10.1046/j.1462-2920.2001.00176.x.PMID 11321547.
  14. ^Griffith, W. P. (1993). "Recent Advances in Dioxolene Chemistry".Transition Metal Chemistry.18 (2):250–256.doi:10.1007/BF00139966.S2CID 93790780.
  15. ^PDB:2ZI8​;Yam KC, D'Angelo I, Kalscheuer R, Zhu H, Wang JX, Snieckus V, Ly LH, Converse PJ, Jacobs WR, Strynadka N, Eltis LD (March 2009)."Studies of a ring-cleaving dioxygenase illuminate the role of cholesterol metabolism in the pathogenesis of Mycobacterium tuberculosis".PLOS Pathog.5 (3): e1000344.doi:10.1371/journal.ppat.1000344.PMC 2652662.PMID 19300498.
  16. ^Bolton, Judy L.; Dunlap, Tareisha L.; Dietz, Birgit M. (2018)."Formation and Biological Targets of Botanical o-Quinones".Food and Chemical Toxicology.120:700–707.doi:10.1016/j.fct.2018.07.050.PMC 6643002.PMID 30063944.S2CID 51887182.
  17. ^Briggs DEG (1999)."Molecular taphonomy of animal and plant cuticles: selective preservation and diagenesis".Philosophical Transactions of the Royal Society B: Biological Sciences.354 (1379):7–17.doi:10.1098/rstb.1999.0356.PMC 1692454.
  18. ^Encyclopedia of Reagents for Organic Synthesis, 2001,doi:10.1002/047084289X,hdl:10261/236866,ISBN 978-0-471-93623-7
  19. ^Fahlbusch, Karl-Georg; Hammerschmidt, Franz-Josef; Panten, Johannes; Pickenhagen, Wilhelm; Schatkowski, Dietmar; Bauer, Kurt; Garbe, Dorothea; Surburg, Horst (2003), "Flavors and Fragrances",Ullmann's Encyclopedia of Industrial Chemistry,doi:10.1002/14356007.a11_141,ISBN 978-3-527-30385-4
  20. ^Eder, Josef Maria (January 1880)."Ueber die chemische Zusammensetzung des Pyroxylins und die Formel der Cellulose" [About the chemical composition of pyroxylin and the formula of cellulose].Berichte der deutschen chemischen Gesellschaft [Reports of the German Chemical Society]] (in German).13 (1):169–186.doi:10.1002/cber.18800130151.ISSN 0365-9496.
  21. ^Eder, Josef Maria (1880).Der neue Eisenoxalat-Entwickler: und dessen Vergleichung mit dem Pyrogallus-Entwickler [The new iron oxalate developer: and its comparison with the Pyrogallol developer] (in German). Vienna: Verlag der Photographischen Correspondenz: Hermann Vogel.OCLC 80152687.
  22. ^abStephen G. Anchell (2012-09-10).The Darkroom Cookbook. Taylor & Francis.ISBN 978-1136092770.
  23. ^Stephen G. Anchell; Bill Troop (1998).The Film Developing Cookbook.ISBN 978-0240802770.
  24. ^Preferred IUPAC Names. September 2004, Chapter 6, Sect 60–64, p. 38
  25. ^IUPAC, Commission on Nomenclature of Organic Chemistry. A Guide to IUPAC Nomenclature of Organic Compounds (Recommendations 1993)R-5.5.1.1 Alcohols and phenols.
  26. ^Panico, R.; Powell, W. H., eds. (1994).A Guide to IUPAC Nomenclature of Organic Compounds 1993. Oxford: Blackwell Science.ISBN 978-0-632-03488-8.

 This article incorporates text from a publication now in thepublic domainChisholm, Hugh, ed. (1911). "Catechu".Encyclopædia Britannica (11th ed.). Cambridge University Press.

External links

[edit]
Wikimedia Commons has media related toPyrocatechol.
Authority control databases: NationalEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Catechol&oldid=1280087975"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp