Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Carbon tetrafluoride

From Wikipedia, the free encyclopedia
Carbon tetrafluoride
Names
IUPAC names
Tetrafluoromethane
Carbon tetrafluoride
Other names
Carbon tetrafluoride, Perfluoromethane, Tetrafluorocarbon, Freon 14, Halon 14, Arcton 0, CFC 14, PFC 14, R 14, UN 1982
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard100.000.815Edit this at Wikidata
EC Number
  • 200-896-5
RTECS number
  • FG4920000
UNII
  • InChI=1S/CF4/c2-1(3,4)5 checkY
    Key: TXEYQDLBPFQVAA-UHFFFAOYSA-N checkY
  • InChI=1/CF4/c2-1(3,4)5
  • FC(F)(F)F
Properties
CF4
Molar mass88.0043 g/mol
AppearanceColorless gas
Odorodorless
Density3.72 g/L, gas (15 °C)
Melting point−183.6 °C (−298.5 °F; 89.5 K)
Boiling point−127.8 °C (−198.0 °F; 145.3 K)
Critical point (T,P)−45.55 °C (−50.0 °F; 227.6 K), 36.91 standard atmospheres (3,739.9 kPa; 542.4 psi)[1]
0.005%V at 20 °C
0.0038%V at 25 °C
Solubilitysoluble inbenzene,chloroform
Vapor pressure106.5 kPa at −127 °C
5.15 atm-cu m/mole
1.0004823[2]
Viscosity17.32 μPa·s[3]
Structure
Tetragonal
Tetrahedral
0 D
Hazards
Occupational safety and health (OHS/OSH):
Main hazards
Simple asphyxiant and greenhouse gas
NFPA 704 (fire diamond)
Flash pointNon-flammable
Safety data sheet (SDS)ICSC 0575
Related compounds
Otheranions
Tetrachloromethane
Tetrabromomethane
Tetraiodomethane
Othercations
Silicon tetrafluoride
Germanium tetrafluoride
Tin tetrafluoride
Lead tetrafluoride
Related fluoromethanes
Fluoromethane
Difluoromethane
Fluoroform
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
checkY verify (what is checkY☒N ?)
Chemical compound

Tetrafluoromethane, also known ascarbon tetrafluoride or R-14, is the simplestperfluorocarbon (CF4). As its IUPAC name indicates, tetrafluoromethane is the perfluorinated counterpart to the hydrocarbonmethane. It can also be classified as ahaloalkane orhalomethane. Tetrafluoromethane is a usefulrefrigerant but also a potentgreenhouse gas.[4] Although its atmospheric concentration is small, it persists in the atmosphere for 50,000 years, giving it a very highglobal warming potential.[5] It has a very high bond strength due to the nature of thecarbon–fluorine bond.

Bonding

[edit]

Because of the multiple carbon–fluorine bonds, and the highelectronegativity offluorine, the carbon in tetrafluoromethane has a significant positivepartial charge which strengthens and shortens the four carbon–fluorine bonds by providing additionalionic character. Carbon–fluorine bonds are the strongest single bonds inorganic chemistry.[6] Additionally, they strengthen as more carbon–fluorine bonds are added to the same carbon atom. In the one-carbonorganofluorine compounds represented by molecules offluoromethane,difluoromethane,trifluoromethane, and tetrafluoromethane, the carbon–fluorine bonds are strongest in tetrafluoromethane.[7] This effect is due to the increasedcoulombic attractions between the fluorine atoms and the carbon because the carbon has a positive partial charge of 0.76.[7]

Preparation

[edit]

Tetrafluoromethane is the product when any carbon compound, including carbon itself, is burned in an atmosphere of fluorine. With hydrocarbons,hydrogen fluoride is a coproduct. It was first reported in 1926.[8] It can also be prepared by thefluorination ofcarbon dioxide,carbon monoxide orphosgene withsulfur tetrafluoride. Commercially it is manufactured by the reaction ofhydrogen fluoride withdichlorodifluoromethane orchlorotrifluoromethane; it is also produced during theelectrolysis of metalfluorides MF, MF2 using a carbon electrode.

Although it can be made from a myriad of precursors and fluorine, elemental fluorine is expensive and difficult to handle. Consequently,CF
4
is prepared on an industrial scale usinghydrogen fluoride:[4]

CCl2F2 + 2 HF → CF4 + 2 HCl

Laboratory synthesis

[edit]

Tetrafluoromethane andsilicon tetrafluoride can be prepared in the laboratory by the reaction ofsilicon carbide with fluorine.

SiC + 4 F2 → CF4 + SiF4

Reactions

[edit]

Tetrafluoromethane, like other fluorocarbons, is very stable due to the strength of its carbon–fluorine bonds. The bonds in tetrafluoromethane have abonding energy of 515 kJ⋅mol−1. As a result, it is inert to acids and hydroxides. However, it reacts explosively withalkali metals.Thermal decomposition or combustion of CF4 produces toxic gases (carbonyl fluoride andcarbon monoxide) and in the presence of water will also yieldhydrogen fluoride.

It is very slightly soluble in water (about 20 mg⋅L−1), but highly soluble in organic solvents. When liquified, it is completely miscible in organic solvents.

Uses

[edit]

Tetrafluoromethane is sometimes used as a low temperaturerefrigerant (R-14). It is used inelectronicsmicrofabrication alone or in combination withoxygen as aplasma etchant forsilicon,silicon dioxide, andsilicon nitride.[9] It also has uses in neutron detectors.[10]

Environmental effects

[edit]
Mauna Loa tetrafluoromethane (CF4) timeseries.
PFC-14 measured by the Advanced Global Atmospheric Gases Experiment (AGAGE) in the lower atmosphere (troposphere) at stations around the world. Abundances are given as pollution free monthly mean mole fractions inparts-per-trillion.
Atmospheric concentration of CF4 (PFC-14) vs. similar man-made gases (right graph). Note the log scale.

Tetrafluoromethane is a potentgreenhouse gas that contributes to thegreenhouse effect. It is very stable, has anatmospheric lifetime of 50,000 years, and a highgreenhouse warming potential 6,500 times that of CO2.[11]

Tetrafluoromethane is the most abundantperfluorocarbon in the atmosphere, where it is designated as PFC-14. Its atmospheric concentration is growing:[12] its preindustrial concentration produced via radioactive oxidation offluorite and reaction with organic molecules was less than 40 parts per trillion.[13][a] As of 2019, the man-made gasesCFC-11 andCFC-12 continue to contribute a strongerradiative forcing than PFC-14.[14]

Although structurally similar tochlorofluorocarbons (CFCs), tetrafluoromethane does notdeplete the ozone layer[15] because the carbon–fluorine bond is much stronger than that between carbon and chlorine.[16]

Main industrial emissions of tetrafluoromethane besideshexafluoroethane are produced during production ofaluminium usingHall-Héroult process. CF4 also is produced as product of the breakdown of more complex compounds such ashalocarbons.[17]

Health risks

[edit]

Due to its density, tetrafluoromethane can displace air, creating anasphyxiation hazard in inadequately ventilated areas. Otherwise, it is normally harmless due to its stability.

See also

[edit]

Notes

[edit]
  1. ^This figure is forall perfluorocarbons: no data for the preindustrial abundance of individual compounds of this class exist.

References

[edit]
  1. ^Lide, David R.; Kehiaian, Henry V. (1994).CRC Handbook of Thermophysical and Themochemical Data(PDF). CRC Press. p. 31.
  2. ^Abjean, R.; A. Bideau-Mehu; Y. Guern (15 July 1990). "Refractive index of carbon tetrafluoride (CF4) in the 300-140 nm wavelength range".Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.292 (3):593–594.Bibcode:1990NIMPA.292..593A.doi:10.1016/0168-9002(90)90178-9.
  3. ^Kestin, J.; Ro, S.T.; Wakeham, W.A. (1971). "Reference values of the viscosity of twelve gases at 25°C".Transactions of the Faraday Society.67:2308–2313.doi:10.1039/TF9716702308.
  4. ^abSiegemund, Günter; Schwertfeger, Werner; Feiring, Andrew; Smart, Bruce; Behr, Fred; Vogel, Herward; McKusick, Blaine (2002). "Fluorine Compounds, Organic".Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH.doi:10.1002/14356007.a11_349.ISBN 978-3-527-30673-2.
  5. ^Harrison, Jeremy J. (Feb 2021)."New infrared absorption cross sections for the infrared limb sounding of carbon tetrafluoride (CF4)".Journal of Quantitative Spectroscopy and Radiative Transfer.260: 107432.
  6. ^O'Hagan D (February 2008). "Understanding organofluorine chemistry and in cations. An introduction to the C–F bond".Chemical Society Reviews.37 (2):308–19.doi:10.1039/b711844a.PMID 18197347.
  7. ^abLemal, D.M. (2004). "Perspective on Fluorocarbon Chemistry".J. Org. Chem.69 (1):1–11.doi:10.1021/jo0302556.PMID 14703372.
  8. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  9. ^K. Williams, K. Gupta, M. Wasilik.Etch Rates for Micromachining Processing – Part II J. Microelectromech. Syst., vol. 12, pp. 761–777, December 2003.
  10. ^Moon, Myung-Kook; Nam, Uk-Won; Lee, Chang-Hee; Em, V.T.; Choi, Young-Hyun; Cheon, Jong-Kyu; Kong, Kyung-Nam (2005). "Low efficiency 2-dimensional position-sensitive neutron detector for beam profile measurement".Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment.538 (1–3):592–596.Bibcode:2005NIMPA.538..592M.doi:10.1016/j.nima.2004.09.020.
  11. ^Artaxo, Paulo; Berntsen, Terje; Betts, Richard; Fahey, David W.; Haywood, James;Lean, Judith; Lowe, David C.; Myhre, Gunnar; Nganga, John; Prinn, Ronald; Raga, Graciela; Schulz, Michael; van Dorland, Robert (February 2018)."Changes in Atmospheric Constituents and in Radiative Forcing"(PDF).Intergovernmental Panel on Climate Change. p. 212. Retrieved17 March 2021.
  12. ^"Climate change indicators - Atmospheric concentration of greenhouse gases - Figure 4".United States Environmental Protection Agency. 27 June 2016. Retrieved2020-09-26.
  13. ^Harnisch, Jochen; Eisenhauer, Anton (1998)."Natural CF4 and SF6 on Earth".Geophysical Research Letters.25 (13):2401–2404.Bibcode:1998GeoRL..25.2401H.doi:10.1029/98GL01779.S2CID 129805049.
  14. ^Butler J. and Montzka S. (2020)."The NOAA Annual Greenhouse Gas Index (AGGI)".NOAA Global Monitoring Laboratory/Earth System Research Laboratories.
  15. ^Cicerone, Ralph J. (1979-10-05)."Atmospheric Carbon Tetrafluoride: A Nearly Inert Gas"(PDF).Science.206 (4414):59–61.Bibcode:1979Sci...206...59C.doi:10.1126/science.206.4414.59.ISSN 0036-8075.PMID 17812452.S2CID 34911990.
  16. ^"Bond Energies".www2.chemistry.msu.edu. Retrieved2023-01-15.
  17. ^Jubb, Aaron M.; McGillen, Max R.; Portmann, Robert W.; Daniel, John S.; Burkholder, James B. (2015)."An atmospheric photochemical source of the persistent greenhouse gas CF4".Geophysical Research Letters.42 (21):9505–9511.Bibcode:2015GeoRL..42.9505J.doi:10.1002/2015GL066193.ISSN 0094-8276.

External links

[edit]
By substitution pattern
Unsubstituted
Monosubstituted
Disubstituted
X,X
X,Y
Trisubstituted
X,X,X
X,X,Y
X,Y,Z
Tetrasubstituted
X,X,X,X
X,X,X,Y
X,X,Y,Y
X,X,Y,Z
X,Y,Z,W
Special types
Chiral
Isotopologues
Compounds
Carbon ions
Nanostructures
Oxides and related
Salts and covalent derivatives of thefluoride ion
HF?HeF2
LiFBeF2BF
BF3
B2F4
+BO3
CF4
CxFy
+CO3
NF3
FN3
N2F2
NF
N2F4
NF2
?NF5
+N
+NO3
OF2
O2F2
OF
O3F2
O4F2
?OF4
F2Ne
NaFMgF2AlF
AlF3
SiF4P2F4
PF3
PF5
+PO4
S2F2
SF2
S2F4
SF3
SF4
S2F10
SF6
+SO4
ClF
ClF3
ClF5
?ArF2
?ArF4
KFCaF
CaF2
ScF3TiF2
TiF3
TiF4
VF2
VF3
VF4
VF5
CrF2
CrF3
CrF4
CrF5
?CrF6
MnF2
MnF3
MnF4
?MnF5
FeF2
FeF3
FeF4
CoF2
CoF3
CoF4
NiF2
NiF3
NiF4
CuF
CuF2
?CuF3
ZnF2GaF2
GaF3
GeF2
GeF4
AsF3
AsF5
Se2F2
SeF4
SeF6
+SeO3
BrF
BrF3
BrF5
KrF2
?KrF4
?KrF6
RbFSrF
SrF2
YF3ZrF2
ZrF3
ZrF4
NbF4
NbF5
MoF4
MoF5
MoF6
TcF4
TcF
5

TcF6
RuF3
RuF
4

RuF5
RuF6
RhF3
RhF4
RhF5
RhF6
PdF2
Pd[PdF6]
PdF4
?PdF6
Ag2F
AgF
AgF2
AgF3
CdF2InF
InF3
SnF2
SnF4
SbF3
SbF5
TeF4
?Te2F10
TeF6
+TeO3
IF
IF3
IF5
IF7
+IO3
XeF2
XeF4
XeF6
?XeF8
CsFBaF2 LuF3HfF4TaF5WF4
WF5
WF6
ReF4
ReF5
ReF6
ReF7
OsF4
OsF5
OsF6
?OsF
7

?OsF
8
IrF2
IrF3
IrF4
IrF5
IrF6
PtF2
Pt[PtF6]
PtF4
PtF5
PtF6
AuF
AuF3
Au2F10
?AuF6
AuF5•F2
Hg2F2
HgF2
?HgF4
TlF
TlF3
PbF2
PbF4
BiF3
BiF5
PoF2
PoF4
PoF6
AtF
?AtF3
?AtF5
RnF2
?RnF
4

?RnF
6
FrFRaF2 LrF3RfDbSgBhHsMtDsRgCnNhFlMcLvTsOg
LaF3CeF3
CeF4
PrF3
PrF4
NdF2
NdF3
NdF4
PmF3SmF
SmF2
SmF3
EuF2
EuF3
GdF3TbF3
TbF4
DyF2
DyF3
DyF4
HoF3ErF3TmF2
TmF3
YbF2
YbF3
AcF3ThF2
ThF3
ThF4
PaF4
PaF5
UF3
UF4
UF5
UF6
NpF3
NpF4
NpF5
NpF6
PuF3
PuF4
PuF5
PuF6
AmF2
AmF3
AmF4
?AmF6
CmF3
CmF4
 ?CmF6
BkF3
BkF
4
CfF3
CfF4
EsF3
EsF4
?EsF6
FmMdF3No
PF6,AsF6,SbF6 compounds
AlF2−5,AlF3−6 compounds
chlorides, bromides, iodides
and pseudohalogenides
SiF2−6,GeF2−6 compounds
Oxyfluorides
Organofluorides
with transition metal,
lanthanide, actinide, ammonium
nitric acids
bifluorides
thionyl, phosphoryl,
and iodosyl
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Carbon_tetrafluoride&oldid=1319054296"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp