Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cantelli's inequality

From Wikipedia, the free encyclopedia
Inequality in probability theorem

Inprobability theory,Cantelli's inequality (also called theChebyshev-Cantelli inequality and theone-sided Chebyshev inequality) is an improved version ofChebyshev's inequality for one-sided tail bounds.[1][2][3] The inequality states that, forλ>0,{\displaystyle \lambda >0,}

Pr(XE[X]λ)σ2σ2+λ2,{\displaystyle \Pr(X-\mathbb {E} [X]\geq \lambda )\leq {\frac {\sigma ^{2}}{\sigma ^{2}+\lambda ^{2}}},}

where

X{\displaystyle X} is a real-valuedrandom variable,
Pr{\displaystyle \Pr } is theprobability measure,
E[X]{\displaystyle \mathbb {E} [X]} is theexpected value ofX{\displaystyle X},
σ2{\displaystyle \sigma ^{2}} is thevariance ofX{\displaystyle X}.

Applying the Cantelli inequality toX{\displaystyle -X} gives a bound on the lower tail,

Pr(XE[X]λ)σ2σ2+λ2.{\displaystyle \Pr(X-\mathbb {E} [X]\leq -\lambda )\leq {\frac {\sigma ^{2}}{\sigma ^{2}+\lambda ^{2}}}.}

While the inequality is often attributed toFrancesco Paolo Cantelli who published it in 1928,[4] it originates in Chebyshev's work of 1874.[5] When bounding the event random variable deviates from itsmean in only one direction (positive or negative), Cantelli's inequality gives an improvement over Chebyshev's inequality. The Chebyshev inequality has"higher moments versions" and"vector versions", and so does the Cantelli inequality.

Comparison to Chebyshev's inequality

[edit]

For one-sided tail bounds, Cantelli's inequality is better, since Chebyshev's inequality can only get

Pr(XE[X]λ)Pr(|XE[X]|λ)σ2λ2.{\displaystyle \Pr(X-\mathbb {E} [X]\geq \lambda )\leq \Pr(|X-\mathbb {E} [X]|\geq \lambda )\leq {\frac {\sigma ^{2}}{\lambda ^{2}}}.}

On the other hand, for two-sided tail bounds, Cantelli's inequality gives

Pr(|XE[X]|λ)=Pr(XE[X]λ)+Pr(XE[X]λ)2σ2σ2+λ2,{\displaystyle \Pr(|X-\mathbb {E} [X]|\geq \lambda )=\Pr(X-\mathbb {E} [X]\geq \lambda )+\Pr(X-\mathbb {E} [X]\leq -\lambda )\leq {\frac {2\sigma ^{2}}{\sigma ^{2}+\lambda ^{2}}},}

which is always worse than Chebyshev's inequality (whenλσ{\displaystyle \lambda \geq \sigma }; otherwise, both inequalities bound a probability by a value greater than one, and so are trivial).

Generalizations

[edit]

Various stronger inequalities can be shown.He, Zhang, and Zhang showed[6] (Corollary 2.3) whenE[X]=0,E[X2]=1{\displaystyle \mathbb {E} [X]=0,\,\mathbb {E} [X^{2}]=1} andλ0{\displaystyle \lambda \geq 0}:

Pr(Xλ)1(233)(1+λ2)2E[X4]+6λ2+λ4.{\displaystyle \Pr(X\geq \lambda )\leq 1-(2{\sqrt {3}}-3){\frac {(1+\lambda ^{2})^{2}}{\mathbb {E} [X^{4}]+6\lambda ^{2}+\lambda ^{4}}}.}

In the caseλ=0{\displaystyle \lambda =0} this matches a bound in Berger's "The Fourth Moment Method",[7]

Pr(X0)233E[X4].{\displaystyle \Pr(X\geq 0)\geq {\frac {2{\sqrt {3}}-3}{\mathbb {E} [X^{4}]}}.}

This improves over Cantelli's inequality in that we can get a non-zero lower bound, even whenE[X]=0{\displaystyle \mathbb {E} [X]=0}.

See also

[edit]

References

[edit]
  1. ^Boucheron, Stéphane (2013).Concentration inequalities : a nonasymptotic theory of independence. Gábor Lugosi, Pascal Massart. Oxford: Oxford University Press.ISBN 978-0-19-953525-5.OCLC 829910957.
  2. ^"Tail and Concentration Inequalities" by Hung Q. Ngo
  3. ^"Concentration-of-measure inequalities" by Gábor Lugosi
  4. ^Cantelli, F. P. (1928), "Sui confini della probabilita," Atti del Congresso Internazional del Matematici, Bologna, 6, 47-5
  5. ^Ghosh, B.K., 2002. Probability inequalities related to Markov's theorem.The American Statistician, 56(3), pp.186-190
  6. ^He, S.; Zhang, J.; Zhang, S. (2010). "Bounding probability of small deviation: A fourth moment approach".Mathematics of Operations Research.35 (1):208–232.doi:10.1287/moor.1090.0438.S2CID 11298475.
  7. ^Berger, Bonnie (August 1997)."The Fourth Moment Method".SIAM Journal on Computing.26 (4):1188–1207.doi:10.1137/S0097539792240005.ISSN 0097-5397.S2CID 14313557.
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cantelli%27s_inequality&oldid=1301274414"
Category:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp