Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Cameron–Martin theorem

From Wikipedia, the free encyclopedia
Theorem describing translation of Gaussian measures on Hilbert spaces

Inmathematics, theCameron–Martin theorem orCameron–Martin formula (named afterRobert Horton Cameron andW. T. Martin) is atheorem ofmeasure theory that describes howabstract Wiener measure changes undertranslation by certain elements of the Cameron–MartinHilbert space.

Motivation

[edit]

The standardGaussian measureγn{\displaystyle \gamma ^{n}} onn{\displaystyle n}-dimensionalEuclidean spaceRn{\displaystyle \mathbf {R} ^{n}} is not translation-invariant. (In fact, there is a unique translation invariantRadon measure up to scale byHaar's theorem: then{\displaystyle n}-dimensionalLebesgue measure, denoted heredx{\displaystyle dx}.) Instead, a measurable subsetA{\displaystyle A} hasGaussian measure

γn(A)=1(2π)n/2Aexp(12x,xRn)dx.{\displaystyle \gamma _{n}(A)={\frac {1}{(2\pi )^{n/2}}}\int _{A}\exp \left(-{\tfrac {1}{2}}\langle x,x\rangle _{\mathbf {R} ^{n}}\right)\,dx.}

Herex,xRn{\displaystyle \langle x,x\rangle _{\mathbf {R} ^{n}}} refers to the standard Euclideandot product inRn{\displaystyle \mathbf {R} ^{n}}. The Gaussian measure of the translation ofA{\displaystyle A} by a vectorhRn{\displaystyle h\in \mathbf {R} ^{n}} is

γn(Ah)=1(2π)n/2Aexp(12xh,xhRn)dx=1(2π)n/2Aexp(2x,hRnh,hRn2)exp(12x,xRn)dx.{\displaystyle {\begin{aligned}\gamma _{n}(A-h)&={\frac {1}{(2\pi )^{n/2}}}\int _{A}\exp \left(-{\tfrac {1}{2}}\langle x-h,x-h\rangle _{\mathbf {R} ^{n}}\right)\,dx\\[4pt]&={\frac {1}{(2\pi )^{n/2}}}\int _{A}\exp \left({\frac {2\langle x,h\rangle _{\mathbf {R} ^{n}}-\langle h,h\rangle _{\mathbf {R} ^{n}}}{2}}\right)\exp \left(-{\tfrac {1}{2}}\langle x,x\rangle _{\mathbf {R} ^{n}}\right)\,dx.\end{aligned}}}

So under translation throughh{\displaystyle h}, the Gaussian measure scales by the distribution function appearing in the last display:

exp(2x,hRnh,hRn2)=exp(x,hRn12hRn2).{\displaystyle \exp \left({\frac {2\langle x,h\rangle _{\mathbf {R} ^{n}}-\langle h,h\rangle _{\mathbf {R} ^{n}}}{2}}\right)=\exp \left(\langle x,h\rangle _{\mathbf {R} ^{n}}-{\tfrac {1}{2}}\|h\|_{\mathbf {R} ^{n}}^{2}\right).}

The measure that associates to the setA{\displaystyle A} the numberγn(Ah){\displaystyle \gamma _{n}(A-h)} is thepushforward measure, denoted(Th)(γn).{\displaystyle (T_{h})_{*}(\gamma ^{n}).} HereTh:RnRn{\displaystyle T_{h}:\mathbf {R} ^{n}\to \mathbf {R} ^{n}} refers to the translation map:Th(x)=x+h{\displaystyle T_{h}(x)=x+h}. The above calculation shows that theRadon–Nikodym derivative of the pushforward measure with respect to the original Gaussian measure is given by

d(Th)(γn)dγn(x)=exp(h,xRn12hRn2).{\displaystyle {\frac {\mathrm {d} (T_{h})_{*}(\gamma ^{n})}{\mathrm {d} \gamma ^{n}}}(x)=\exp \left(\left\langle h,x\right\rangle _{\mathbf {R} ^{n}}-{\tfrac {1}{2}}\|h\|_{\mathbf {R} ^{n}}^{2}\right).}

The abstract Wiener measureγ{\displaystyle \gamma } on aseparableBanach spaceE{\displaystyle E}, wherei:HE{\displaystyle i:H\to E} is anabstract Wiener space, is also a "Gaussian measure" in a suitable sense. How does it change under translation? It turns out that a similar formula to the one above holds if we consider only translations by elements of thedensesubspacei(H)E{\displaystyle i(H)\subseteq E}.

Statement of the theorem

[edit]

For abstract Wiener spaces

[edit]

Leti:HE{\displaystyle i:H\to E} be an abstract Wiener space with abstract Wiener measureγ:Borel(E)[0,1]{\displaystyle \gamma :\operatorname {Borel} (E)\to [0,1]}. ForhH{\displaystyle h\in H}, defineTh:EE{\displaystyle T_{h}:E\to E} byTh(x)=x+i(h){\displaystyle T_{h}(x)=x+i(h)}. Then(Th)(γ){\displaystyle (T_{h})_{*}(\gamma )} isequivalent toγ{\displaystyle \gamma } with Radon–Nikodym derivative

d(Th)(γ)dγ(x)=exp(h,x12hH2),{\displaystyle {\frac {\mathrm {d} (T_{h})_{*}(\gamma )}{\mathrm {d} \gamma }}(x)=\exp \left(\langle h,x\rangle ^{\sim }-{\tfrac {1}{2}}\|h\|_{H}^{2}\right),}

where

h,x=i(h)(x){\displaystyle \langle h,x\rangle ^{\sim }=i(h)(x)}

denotes thePaley–Wiener integral.

The Cameron–Martin formula is valid only for translations by elements of the dense subspacei(H)E{\displaystyle i(H)\subseteq E}, calledCameron–Martin space, and not by arbitrary elements ofE{\displaystyle E}. If the Cameron–Martin formula did hold for arbitrary translations, it would contradict the following result:

IfE{\displaystyle E} is a separable Banach space andμ{\displaystyle \mu } is a locally finiteBorel measure onE{\displaystyle E} that is equivalent to its own push forward under any translation, then eitherE{\displaystyle E} has finite dimension orμ{\displaystyle \mu } is thetrivial (zero) measure. (Seequasi-invariant measure.)

In fact,γ{\displaystyle \gamma } is quasi-invariant under translation by an elementv{\displaystyle v}if and only ifvi(H){\displaystyle v\in i(H)}. Vectors ini(H){\displaystyle i(H)} are sometimes known asCameron–Martin directions.

Version for locally convex vector spaces

[edit]

Consider alocally convex vector spaceE{\displaystyle E}, with a Gaussian measureγ{\displaystyle \gamma } on thecylindrical σ-algebraσ(Cyl(E,E)){\displaystyle \sigma (\operatorname {Cyl} (E,E'))} and letγm:=γ(m){\displaystyle \gamma _{m}:=\gamma (\cdot -m)} denote the translation bymE{\displaystyle m\in E}. For an element in the topological dualfE{\displaystyle f\in E'} define the distance to the meantγ(f):=fEγ[f],{\displaystyle t_{\gamma }(f):=f-\mathbb {E} _{\gamma }[f],}and denote the closure inL2(E,γ){\displaystyle L^{2}(E,\gamma )} asEaγ:=clos{(tγ(fn))n: fE}{\displaystyle E_{a}^{\gamma }:=\operatorname {clos} \left\{(t_{\gamma }(f_{n}))_{n}\colon \ f\in E'\right\}}.Define the covariance operatorRγ¯:Eaγ(E){\displaystyle {\overline {R_{\gamma }}}:E_{a}^{\gamma }\to (E')^{*}} extended to the closure as

Rγ¯(f)(g)=f,gEγ[g]L2(γ){\displaystyle {\overline {R_{\gamma }}}(f)(g)=\langle f,g-\mathbb {E} _{\gamma }[g]\rangle _{L^{2}(\gamma )}}.

Define the norm

hHγ:=sup{f(h):fE,Rγ¯(f)(f)1},{\displaystyle \|h\|_{H_{\gamma }}:=\sup\{f(h)\colon f\in E',\;{\overline {R_{\gamma }}}(f)(f)\leq 1\},}

then theCameron–Martin spaceHγ{\displaystyle H_{\gamma }} ofγ{\displaystyle \gamma } inE{\displaystyle E} is

Hγ={hE:hHγ<}{\displaystyle H_{\gamma }=\{h\in E\colon \|h\|_{H_{\gamma }}<\infty \}}.

If forhE{\displaystyle h\in E} there exists angEaγ{\displaystyle g\in E_{a}^{\gamma }} such thath=Rγ¯(g){\displaystyle h={\overline {R_{\gamma }}}(g)} thenhHγ{\displaystyle h\in H_{\gamma }} andhHγ=gL2(γ){\displaystyle \|h\|_{H_{\gamma }}=\|g\|_{L^{2}(\gamma )}}. Further there isequivalenceγhγ{\displaystyle \gamma _{h}\sim \gamma } with Radon-Nikodým density

dγhdγ=exp(g(x)12hHγ2).{\displaystyle {\frac {d\gamma _{h}}{d\gamma }}=\exp \left(g(x)-{\frac {1}{2}}\|h\|_{H_{\gamma }}^{2}\right).}

IfhHγ{\displaystyle h\not \in H_{\gamma }} the two measures aresingular.[1]

Integration by parts

[edit]

The Cameron–Martin formula gives rise to anintegration by parts formula onE{\displaystyle E}: ifF:ER{\displaystyle F:E\to \mathbf {R} } hasboundedFréchet derivativeDF:ELin(E;R)=E{\displaystyle \mathrm {D} F:E\to \operatorname {Lin} (E;\mathbf {R} )=E^{*}}, integrating the Cameron–Martin formula with respect to Wiener measure on both sides gives

EF(x+ti(h))dγ(x)=EF(x)exp(th,x12t2hH2)dγ(x){\displaystyle \int _{E}F(x+ti(h))\,\mathrm {d} \gamma (x)=\int _{E}F(x)\exp \left(t\langle h,x\rangle ^{\sim }-{\tfrac {1}{2}}t^{2}\|h\|_{H}^{2}\right)\,\mathrm {d} \gamma (x)}

for anytR{\displaystyle t\in \mathbf {R} }. Formally differentiating with respect tot{\displaystyle t} and evaluating att=0{\displaystyle t=0} gives the integration by parts formula

EDF(x)(i(h))dγ(x)=EF(x)h,xdγ(x).{\displaystyle \int _{E}\mathrm {D} F(x)(i(h))\,\mathrm {d} \gamma (x)=\int _{E}F(x)\langle h,x\rangle ^{\sim }\,\mathrm {d} \gamma (x).}

Comparison with thedivergence theorem ofvector calculus suggests

div[Vh](x)=h,x,{\displaystyle \mathop {\mathrm {div} } [V_{h}](x)=-\langle h,x\rangle ^{\sim },}

whereVh:EE{\displaystyle V_{h}:E\to E} is the constant "vector field"Vh(x)=i(h){\displaystyle V_{h}(x)=i(h)} for allxE{\displaystyle x\in E}. The wish to consider more general vector fields and to think of stochastic integrals as "divergences" leads to the study ofstochastic processes and theMalliavin calculus, and, in particular, theClark–Ocone theorem and its associated integration by parts formula.

An application

[edit]

Using Cameron–Martin theorem one may establish (See Liptser and Shiryayev 1977, p. 280) that for aq×q{\displaystyle q\times q} symmetric non-negativedefinite matrixH(t){\displaystyle H(t)} whose elementsHj,k(t){\displaystyle H_{j,k}(t)} are continuous and satisfy the condition

0Tj,k=1q|Hj,k(t)|dt<,{\displaystyle \int _{0}^{T}\sum _{j,k=1}^{q}|H_{j,k}(t)|\,dt<\infty ,}

it holds for aq{\displaystyle q}−dimensionalWiener processw(t){\displaystyle w(t)} that

E[exp(0Tw(t)H(t)w(t)dt)]=exp[120Ttr(G(t))dt],{\displaystyle E\left[\exp \left(-\int _{0}^{T}w(t)^{*}H(t)w(t)\,dt\right)\right]=\exp \left[{\tfrac {1}{2}}\int _{0}^{T}\operatorname {tr} (G(t))\,dt\right],}

whereG(t){\displaystyle G(t)} is aq×q{\displaystyle q\times q} nonpositive definite matrix which is a unique solution of the matrix-valuedRiccati differential equation

dG(t)dt=2H(t)G2(t){\displaystyle {\frac {dG(t)}{dt}}=2H(t)-G^{2}(t)}

with the boundary conditionG(T)=0{\displaystyle G(T)=0}.

In the special case of a one-dimensional Brownian motion whereH(t)=1/2{\displaystyle H(t)=1/2}, the unique solution isG(t)=tanh(tT){\displaystyle G(t)=\tanh(t-T)}, and we have the original formula as established by Cameron and Martin:E[exp(120Tw(t)2dt)]=1coshT.{\displaystyle E\left[\exp \left(-{\tfrac {1}{2}}\int _{0}^{T}w(t)^{2}\,dt\right)\right]={\frac {1}{\sqrt {\cosh T}}}.}

See also

[edit]

References

[edit]
  1. ^Bogachev, Vladimir (1998).Gaussian Measures. Rhode Island:American Mathematical Society.
Basic concepts
Derivatives
Measurability
Integrals
Results
Related
Functional calculus
Applications
Discrete time
Continuous time
Both
Fields and other
Time series models
Financial models
Actuarial models
Queueing models
Properties
Limit theorems
Inequalities
Tools
Disciplines
Retrieved from "https://en.wikipedia.org/w/index.php?title=Cameron–Martin_theorem&oldid=1334890733"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2026 Movatter.jp