Movatterモバイル変換


[0]ホーム

URL:


Jump to content
WikipediaThe Free Encyclopedia
Search

Caesium chloride

From Wikipedia, the free encyclopedia
"CsCl" redirects here. For other uses, seeCSCL.
Caesium chloride
Names
IUPAC name
Caesium chloride
Other names
Cesium chloride
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard100.028.728Edit this at Wikidata
EC Number
  • 231-600-2
UNII
  • InChI=1S/ClH.Cs/h1H;/q;+1/p-1 checkY
    Key: AIYUHDOJVYHVIT-UHFFFAOYSA-M checkY
  • InChI=1/ClH.Cs/h1H;/q;+1/p-1
    Key: AIYUHDOJVYHWHXWOFAO
  • [Cs+].[Cl-]
Properties
CsCl
Molar mass168.36 g/mol
Appearancewhite solid
hygroscopic
Density3.988 g/cm3[1]
Melting point646 °C (1,195 °F; 919 K)[1]
Boiling point1,297 °C (2,367 °F; 1,570 K)[1]
1910 g/L (25 °C)[1]
Solubilitysoluble inethanol[1]
Band gap8.35 eV (80 K)[2]
−56.7·10−6 cm3/mol[3]
1.712 (0.3 μm)
1.640 (0.59 μm)
1.631 (0.75 μm)
1.626 (1 μm)
1.616 (5 μm)
1.563 (20 μm)[4]
Structure
CsCl,cP2
Pm3m, No. 221[5]
a = 0.4119 nm
0.0699 nm3
1
Cubic (Cs+)
Cubic (Cl)
Hazards
GHS labelling:
GHS07: Exclamation markGHS08: Health hazard
Warning
H302,H341,H361,H373
P201,P202,P260,P264,P270,P281,P301+P312,P308+P313,P314,P330,P405,P501
Lethal dose or concentration (LD, LC):
2600 mg/kg (oral, rat)[6]
Related compounds
Otheranions
Caesium fluoride
Caesium bromide
Caesium iodide
Caesium astatide
Othercations
Lithium chloride
Sodium chloride
Potassium chloride
Rubidium chloride
Francium chloride
Except where otherwise noted, data are given for materials in theirstandard state (at 25 °C [77 °F], 100 kPa).
☒N verify (what is checkY☒N ?)
Chemical compound

Caesium chloride orcesium chloride is theinorganic compound with the formulaCsCl. This colorless salt is an important source ofcaesiumions in a variety of niche applications. Its crystal structure forms a major structural type where each caesium ion is coordinated by 8 chloride ions. Caesium chloride dissolves in water. CsCl changes toNaCl structure on heating. Caesium chloride occurs naturally as impurities incarnallite (up to 0.002%),sylvite andkainite. Less than 20tonnes of CsCl is produced annually worldwide, mostly from a caesium-bearing mineralpollucite.[7]

Caesium chloride is widely used inisopycnic centrifugation for separating various types ofDNA. It is a reagent inanalytical chemistry, where it is used to identify ions by the color and morphology of the precipitate. When enriched inradioisotopes, such as137CsCl or131CsCl, caesium chloride is used innuclear medicine applications such as treatment ofcancer and diagnosis ofmyocardial infarction. Another form of cancer treatment was studied using conventional non-radioactive CsCl. Whereas conventional caesium chloride has a rather low toxicity to humans and animals, the radioactive form easily contaminates the environment due to the high solubility of CsCl in water. Spread of137CsCl powder from a 93-gram container in 1987 inGoiânia, Brazil, resulted in one of the worst-ever radiation spill accidents killing four, including one child, and directly affecting 249 people.

Crystal structure

[edit]
Main article:Cubic crystal system

The caesium chloride structure adopts a primitive cubic lattice with a two-atom basis, where both atoms have eightfold coordination. The chloride atoms lie upon the lattice points at the corners of the cube, while the caesium atoms lie in the holes in the center of the cubes; an alternative and exactly equivalent 'setting' has the caesium ions at the corners and the chloride ion in the center. This structure is shared withCsBr andCsI and many binary metallicalloys. In contrast, the other alkaline halides have thesodium chloride (rocksalt) structure.[8] When both ions are similar in size (Cs+ionic radius 174 pm for this coordination number, Cl 181 pm) the CsCl structure can be adopted, when they are different (Na+ionic radius 102 pm, Cl 181 pm) thesodium chloride structure is adopted. Upon heating to above 445 °C, the normal caesium chloride structure (α-CsCl) converts to the β-CsCl form with the rocksalt structure (space groupFm3m).[5] The rocksalt structure is also observed at ambient conditions in nanometer-thin CsCl films grown onmica,LiF,KBr and NaCl substrates.[9]

Physical properties

[edit]

Caesium chloride is colorless in the form of large crystals and white when powdered. It readily dissolves in water with the maximum solubility increasing from 1865 g/L at 20 °C to 2705 g/L at 100 °C.[10] The crystals are highlyhygroscopic and deliquescent. Caesium chloride crystals gradually disintegrate at ambient conditions.[11] Caesium chloride does not formhydrates.[12]

Solubility of CsCl in water[13]
Т (°C)010202530405060708090100
S (wt%)61.8363.4864.9665.6466.2967.5068.6069.6170.5471.4072.2172.96

In contrast tosodium chloride andpotassium chloride, caesium chloride readily dissolves in concentrated hydrochloric acid.[14][15] Caesium chloride has also a relatively high solubility informic acid (1077 g/L at 18 °C) andhydrazine; medium solubility inmethanol (31.7 g/L at 25 °C) and low solubility inethanol (7.6 g/L at 25 °C),[12][15][16]sulfur dioxide (2.95 g/L at 25 °C),ammonia (3.8 g/L at 0 °C),acetone (0.004% at 18 °C),acetonitrile (0.083 g/L at 18 °C),[15]ethylacetate and other complexethers,butanone,acetophenone,pyridine andchlorobenzene.[17]

Despite its wideband gap of about 8.35 eV at 80 K,[2] caesium chloride weakly conducts electricity, and the conductivity is not electronic butionic. The conductivity has a value of the order 10−7 S/cm at 300 °C. It occurs through nearest-neighbor jumps of lattice vacancies, and the mobility is much higher for the Cl than Cs+ vacancies. The conductivity increases with temperature up to about 450 °C, with an activation energy changing from 0.6 to 1.3 eV at about 260 °C. It then sharply drops by two orders of magnitude because of the phase transition from the α-CsCl to β-CsCl phase. The conductivity is also suppressed by application of pressure (about 10 times decrease at 0.4 GPa) which reduces the mobility of lattice vacancies.[18]

Properties of aqueous solutions of CsCl at 20 °C[19][20]
Concentration,
wt%
Density,
kg/L
Concentration,
mol/L
refractive index
(at 589 nm)
Freezing point depression, °C relative to waterViscosity,
10−3 Pa·s
0.50.0301.33340.101.000
1.01.00590.0601.33370.200.997
2.01.01370.1201.33450.400.992
3.00.1821.33530.610.988
4.01.02960.2451.33610.810.984
5.00.3081.33691.020.980
6.01.04610.3731.33771.220.977
7.00.4381.33861.430.974
8.01.06290.5051.33941.640.971
9.00.5731.34031.850.969
10.01.08040.6411.34122.060.966
12.01.09830.7821.34302.510.961
14.01.11680.9281.34482.970.955
16.01.13581.0791.34683.460.950
18.01.15551.2351.34873.960.945
20.01.17581.3971.35074.490.939
22.01.19681.5641.35280.934
24.01.21851.7371.35500.930
26.01.9171.35720.926
28.02.1031.35940.924
30.01.28822.2961.36170.922
32.02.4971.36410.922
34.02.7051.36660.924
36.02.9211.36910.926
38.03.1461.37170.930
40.01.42253.3801.37440.934
42.03.6241.37710.940
44.03.8771.38000.947
46.04.1421.38290.956
48.04.4181.38600.967
50.01.58584.7061.38920.981
60.01.78866.3681.40761.120
64.07.1631.41671.238

Reactions

[edit]

Caesium chloride completely dissociates upon dissolution in water, and the Cs+cations aresolvated in dilute solution. CsCl converts tocaesium sulfate upon being heated in concentrated sulfuric acid or heated withcaesium hydrogen sulfate at 550–700 °C:[21]

2 CsCl + H2SO4 → Cs2SO4 + 2 HCl
CsCl + CsHSO4 → Cs2SO4 + HCl

Caesium chloride forms a variety of double salts with other chlorides. Examples include 2CsCl·BaCl2,[22] 2CsCl·CuCl2, CsCl·2CuCl and CsCl·LiCl,[23] and withinterhalogen compounds:[24]

CsCl + ICl3 → Cs[ICl4]

Occurrence and production

[edit]
Monatomic caesium halide wires grown inside double-wallcarbon nanotubes.[25]

Caesium chloride occurs naturally as an impurity in the halide mineralscarnallite (KMgCl3·6H2O with up to 0.002% CsCl),[26]sylvite (KCl) andkainite (MgSO4·KCl·3H2O),[27] and in mineral waters. For example, the water ofBad Dürkheim spa, which was used in isolation of caesium, contained about 0.17 mg/L of CsCl.[28] None of these minerals are commercially important.

On industrial scale, CsCl is produced from the mineralpollucite, which is powdered and treated with hydrochloric acid at elevated temperature. The extract is treated withantimony chloride,iodine monochloride, or cerium(IV) chloride to give the poorly soluble double salt, e.g.:[29]

CsCl + SbCl3 → CsSbCl4

Treatment of the double salt withhydrogen sulfide gives CsCl:[29]

2 CsSbCl4 + 3 H2S → 2 CsCl + Sb2S3 + 8 HCl

High-purity CsCl is also produced from recrystallizedCs[ICl2]{\displaystyle {\ce {Cs[ICl2]}}} (andCs[ICl4]{\displaystyle {\ce {Cs[ICl4]}}}) by thermal decomposition:[30]

Cs[ICl2]CsCl+ICl{\displaystyle {\ce {Cs[ICl2] -> {CsCl}+ ICl}}}

Only about 20tonnes of caesium compounds, with a major contribution from CsCl, were being produced annually around the 1970s[31] and 2000s worldwide.[32] Caesium chloride enriched with caesium-137 forradiation therapy applications is produced at a single facilityMayak in theUral Region of Russia[33] and is sold internationally through a UK dealer. The salt is synthesized at 200 °C because of its hygroscopic nature and sealed in a thimble-shaped steel container which is then enclosed into another steel casing. The sealing is required to protect the salt from moisture.[34]

Laboratory methods

[edit]

In the laboratory, CsCl can be obtained by treatingcaesium hydroxide,carbonate, caesium bicarbonate, or caesium sulfide with hydrochloric acid:

CsOH + HCl → CsCl + H2O
Cs2CO3 + 2 HCl → 2 CsCl + 2 H2O + CO2

Uses

[edit]

Precursor to Cs metal

[edit]

Caesium chloride is the main precursor to caesium metal by high-temperature reduction:[31]

2 CsCl (l) + Mg (l) → MgCl2 (s) + 2 Cs (g)
CsCl (l) + Li (l) → LiCl (l) + Cs (g)

A similar reaction – heating CsCl with calcium in vacuum in presence ofphosphorus – was first reported in 1905 by the French chemist M. L. Hackspill[35] and is still used industrially.[31]

Caesium hydroxide is obtained byelectrolysis of aqueous caesium chloride solution:[36]

2 CsCl + 2 H2O → 2 CsOH + Cl2 + H2

Solute for ultracentrifugation

[edit]

Caesium chloride is widely used incentrifugation in a technique known asisopycnic centrifugation. Centripetal and diffusive forces establish a density gradient that allow separation of mixtures on the basis of their molecular density. This technique allows separation of DNA of different densities (e.g. DNA fragments with differing A-T or G-C content).[31] This application requires a solution with high density and yet relatively low viscosity, and CsCl suits it because of its high solubility in water, high density owing to the large mass of Cs, as well as low viscosity and high stability of CsCl solutions.[29]

Organic chemistry

[edit]

Caesium chloride is rarely used in organic chemistry. It can act as aphase transfer catalyst reagent in selected reactions. One of these reactions is the synthesis ofglutamic acid derivatives

CH2=CHCOOCH3Methyl acrylate+ArCH=NCH(CH3)COOC(CH3)3CPME, 0CTBAB, CsCl, K2CO3ArCH=NC(C2H4COOCH3)(CH3)COOC(CH3)3{\displaystyle \overbrace {\ce {CH2=CHCOOCH3}} ^{\text{Methyl acrylate}}+{\ce {ArCH=N-CH(CH3)-COOC(CH3)3->[{\ce {TBAB,\ CsCl,\ K2CO3}}][{\ce {CPME,\ 0^{\circ }C}}]{ArCH=N-C(C2H4COOCH3)(CH3)-COOC(CH3)3}}}}

where TBAB is tetrabutylammonium bromide (interphase catalyst) and CPME is a cyclopentyl methyl ether (solvent).[37]

Another reaction is substitution oftetranitromethane[38]

C(NO2)4tetranitromethane+CsClDMFC(NO2)3Cl+CsNO2{\displaystyle \overbrace {{\ce {C(NO2)4}}} ^{\text{tetranitromethane}}+{\ce {CsCl ->[{\ce {DMF}}] {C(NO2)3Cl}+ CsNO2}}}

where DMF isdimethylformamide (solvent).

Analytical chemistry

[edit]

Caesium chloride is a reagent in traditionalanalytical chemistry used for detecting inorganic ions via the color and morphology of the precipitates. Quantitative concentration measurement of some of these ions, e.g. Mg2+, withinductively coupled plasma mass spectrometry, is used to evaluate the hardness of water.[39]

IonAccompanying reagentsResidueMorphologyDetection limit (μg)
AsO33−KICs2[AsI5] or Cs3[AsI6]Red hexagons0.01
Au3+AgCl,HClCs2Ag[AuCl6]Gray-black crosses, four and six-beamed stars0.01
Au3+NH4SCNCs[Au(SCN)4]Orange-yellow needles0.4
Bi3+KI,HClCs2[BiI5] or 2.5H2ORed hexagons0.13
Cu2+(CH3COO)2Pb, CH3COOH, KNO2Cs2Pb[Cu(NO2)6]Small black cubes0.01
In3+Cs3[InCl6]Small octahedra0.02
[IrCl6]3−Cs2[IrCl6]Small dark-red octahedra
Mg2+Na2HPO4CsMgPO4 or 6H2OSmall tetrahedra
Pb2+KICs[PbI3]Yellow-green needles0.01
Pd2+NaBrCs2[PdBr4]Dark-red needles and prisms
[ReCl4]Cs[ReCl4]Dark-red rhombs, bipyramids0.2
[ReCl6]2−Cs2[ReCl6]Small yellow-green octahedra0.5
ReO4CsReO4Tetragonal bipyramids0.13
Rh3+KNO2Cs3[Rh(NO2)6]Yellow cubes0.1
Ru3+Cs3[RuCl6]Pink needles
[RuCl6]2−Cs2[RuCl6]Small dark-red crystals0.8
Sb3+Cs2[SbCl5nH2OHexagons0.16
Sb3+NaICs[SbI4]{\displaystyle {\ce {Cs[SbI4]}}} orCs2[SbI5]{\displaystyle {\ce {Cs2[SbI5]}}}Red hexagons0.1
Sn4+Cs2[SnCl6]Small octahedra0.2
TeO33−HClCs2[TeCl6]Light yellow octahedra0.3
Tl3+NaICs[TlI4]{\displaystyle {\ce {Cs[TlI4]}}}Orange-red hexagons or rectangles0.06

It is also used for detection of the following ions:

IonAccompanying reagentsDetectionDetection limit (μg/mL)
Al3+K2SO4Colorless crystals form in neutral media after evaporation0.01
Ga3+KHSO4Colorless crystals form upon heating0.5
Cr3+KHSO4Pale-violet crystals precipitate in slightly acidic media0.06

Medicine

[edit]

TheAmerican Cancer Society states that "available scientific evidence does not support claims that non-radioactive cesium chloride supplements have any effect on tumors."[40] TheFood and Drug Administration has warned about safety risks, including significant heart toxicity and death, associated with the use of caesium chloride in naturopathic medicine.[41][42]

Nuclear medicine and radiography

[edit]

Caesium chloride composed ofradioisotopes such as137CsCl and131CsCl,[43] is used innuclear medicine, including treatment ofcancer (brachytherapy) and diagnosis ofmyocardial infarction.[44][45] In the production ofradioactive sources, it is normal to choose a chemical form of the radioisotope which would not be readily dispersed in the environment in the event of an accident. For instance, radiothermal generators (RTGs) often usestrontium titanate, which is insoluble in water. Forteletherapy sources, however, the radioactive density (Ci in a given volume) needs to be very high, which is not possible with known insoluble caesium compounds. A thimble-shaped container of radioactive caesium chloride provides the active source.

Miscellaneous applications

[edit]

Caesium chloride is used in the preparation of electrically conductingglasses[43][46] and screens of cathode ray tubes.[31] In conjunction with rare gases CsCl is used inexcimer lamps[47][48] andexcimer lasers. Other uses include activation of electrodes in welding;[49] manufacture of mineral water, beer[50] anddrilling muds;[51] and high-temperature solders.[52] High-quality CsCl single crystals have a wide transparency range from UV to the infrared and therefore had been used for cuvettes, prisms and windows in optical spectrometers;[31] this use was discontinued with the development of less hygroscopic materials.

CsCl is a potent inhibitor of HCN channels, which carry the h-current in excitable cells such as neurons.[53] Therefore, it can be useful in electrophysiology experiments in neuroscience.

Toxicity

[edit]

Caesium chloride has a low toxicity to humans and animals.[54] Itsmedian lethal dose (LD50) in mice is 2300 mg per kilogram of body weight for oral administration and 910 mg/kg for intravenous injection.[55] The mild toxicity of CsCl is related to its ability to lower the concentration of potassium in the body and partly substitute it in biochemical processes.[56] When taken in large quantities, however, can cause a significant imbalance in potassium and lead tohypokalemia,arrhythmia, and acutecardiac arrest.[57] However, caesium chloride powder can irritate themucous membranes and causeasthma.[51]

Because of its high solubility in water, caesium chloride is highly mobile and can even diffuse through concrete. This is a drawback for its radioactive form which urges a search for less chemically mobile radioisotope materials. Commercial sources of radioactive caesium chloride are well sealed in a double steel enclosure.[34] However, in theGoiânia accident inBrazil, such a source containing about 93 grams of137CsCl, was stolen from an abandoned hospital and forced open by two scavengers. The blue glow emitted in the dark by the radioactive caesium chloride attracted the thieves and their relatives who were unaware of the associated dangers and spread the powder. This resulted in one of the worst radiation spill accidents in which 4 people died within a month from the exposure, 20 showed signs ofradiation sickness, 249 people were contaminated with radioactive caesium chloride, and about a thousand received a dose exceeding a yearly amount of background radiation. More than 110,000 people overwhelmed the local hospitals, and several city blocks had to be demolished in the cleanup operations. In the first days of the contamination, stomach disorders and nausea due to radiation sickness were experienced by several people, but only after several days one person associated the symptoms with the powder and brought a sample to the authorities.[58][59]

See also

[edit]

References

[edit]
  1. ^abcdeHaynes, p. 4.57
  2. ^abLushchik, A; Feldbach, E; Frorip, A; Ibragimov, K; Kuusmann, I; Lushchik, C (1994). "Relaxation of excitons in wide-gap CsCl crystals".Journal of Physics: Condensed Matter.6 (12):2357–2366.Bibcode:1994JPCM....6.2357L.doi:10.1088/0953-8984/6/12/009.S2CID 250824677.
  3. ^Haynes, p. 4.132
  4. ^Haynes, p. 10.240
  5. ^abWatanabe, M.; Tokonami, M.; Morimoto, N. (1977). "The transition mechanism between the CsCl-type and NaCl-type structures in CsCl".Acta Crystallographica Section A.33 (2): 294.Bibcode:1977AcCrA..33..294W.doi:10.1107/S0567739477000722.
  6. ^Cesium chloride. nlm.nih.gov
  7. ^Greenwood, Norman N.; Earnshaw, Alan (1997).Chemistry of the Elements (2nd ed.).Butterworth-Heinemann.doi:10.1016/C2009-0-30414-6.ISBN 978-0-08-037941-8.
  8. ^Wells A.F. (1984)Structural Inorganic Chemistry 5th edition Oxford Science PublicationsISBN 0-19-855370-6
  9. ^Schulz, L. G. (1951). "Polymorphism of cesium and thallium halides".Acta Crystallographica.4 (6):487–489.Bibcode:1951AcCry...4..487S.doi:10.1107/S0365110X51001641.
  10. ^Lidin, p. 620
  11. ^"ЭСБЕ/Цезий".Brockhaus and Efron Encyclopedic Dictionary. 1890–1907. Retrieved2011-04-15.
  12. ^abKnunyants, I. L, ed. (1998). "Цезия галогениды".Химическая энциклопедия (Chemical encyclopedia). Vol. 5. Moscow: Soviet Encyclopedia. p. 657.ISBN 978-5-85270-310-1.
  13. ^Haynes, p. 5.191
  14. ^Turova, N. Ya. (1997).Неорганическая химия в таблицах. Moscow. p. 85.{{cite book}}: CS1 maint: location missing publisher (link)
  15. ^abcPlyushev, V.E.; Stepin, B. D (1975).Аналитическая химия рубидия и цезия. Moscow: Nauka. pp. 22–26.
  16. ^Plyushev, p. 97
  17. ^Plyushev, V.E.; et al. (1976). Bolshakov, K. A. (ed.).Химия и технология редких и рассеянных элементов. Vol. 1 (2 ed.). Moscow: Vysshaya Shkola. pp. 101–103.
  18. ^Ehrenreich, Henry (1984).Solid state physics: advances in research and applications. Academic Press. pp. 29–31.ISBN 978-0-12-607738-4.
  19. ^Haynes, p. 5.126
  20. ^Lidin, p. 645
  21. ^Lidin, R. A; Molochko V.; Andreeva, L. L. A. (2000).Химические свойства неорганических веществ (3 ed.). Moscow: Khimiya. p. 49.ISBN 978-5-7245-1163-6.
  22. ^Knunyants, I. L, ed. (1988). "Бария хлорид".Химическая энциклопедия. Vol. 1. Moscow: Soviet Encyclopedia. p. 463.
  23. ^National Research Council (U.S.). Office of Critical Tables, ed. (1962).Consolidated Index of Selected Property Values: Physical Chemistry and Thermodynamics (Publication 976 ed.). Washington, D.C.: National Academy of Science. p. 271.
  24. ^Knunyants, I. L, ed. (1992). "Полигалогениды".Химическая энциклопедия. Vol. 3. Moscow: Soviet encyclopedia. pp. 1237–1238.ISBN 978-5-85270-039-1.
  25. ^Senga, Ryosuke; Komsa, Hannu-Pekka; Liu, Zheng; Hirose-Takai, Kaori; Krasheninnikov, Arkady V.; Suenaga, Kazu (2014). "Atomic structure and dynamic behaviour of truly one-dimensional ionic chains inside carbon nanotubes".Nature Materials.13 (11):1050–4.Bibcode:2014NatMa..13.1050S.doi:10.1038/nmat4069.PMID 25218060.
  26. ^Knunyants, I. L, ed. (1998). "Цезий".Химическая энциклопедия (Chemical encyclopedia). Vol. 5. Moscow: Soviet Encyclopedia. pp. 654–656.ISBN 978-5-85270-310-1.
  27. ^Plyushev, pp. 210–211
  28. ^Plyushev, p. 206
  29. ^abc"Cesium and Cesium Compounds".Kirk-Othmer Encyclopedia of Chemical Technology. Vol. 5 (4th ed.). New York: John Wiley & Sons. 1994. pp. 375–376.
  30. ^Plsyushev, pp. 357–358
  31. ^abcdefBick, Manfred and Prinz, Horst (2002) "Cesium and Cesium Compounds" inUllmann's Encyclopedia of Industrial Chemistry, Wiley-VCH, Weinheim. Vol. A6, pp. 153–156.doi:10.1002/14356007.a06_153
  32. ^Halka M.; Nordstrom B. (2010).Alkali and Alkaline Earth Metals. Infobase Publishing. p. 52.ISBN 978-0-8160-7369-6.
  33. ^Enrique Lima "Cesium: Radionuclide" in Encyclopedia of Inorganic Chemistry, 2006, Wiley-VCH, Weinheim.doi:10.1002/0470862106.ia712
  34. ^abNational Research Council (U.S.). Committee on Radiation Source Use and Replacement; Nuclear and Radiation Studies Board (January 2008).Radiation source use and replacement: abbreviated version. National Academies Press. pp. 28–.ISBN 978-0-309-11014-3.{{cite book}}: CS1 maint: multiple names: authors list (link)
  35. ^Hackspill, M. L. (1905)."Sur une nouvelle prepapratíon du rubidium et du cæsium".Comptes Rendus Hebdomadaires des Séances de l'Académie des Sciences (in French).141: 106.
  36. ^Plyushev, p. 90
  37. ^Kano T.; Kumano T.; Maruoka K. (2009). "Rate Enhancement of Phase Transfer Catalyzed Conjugate Additions by CsCl".Organic Letters.11 (9):2023–2025.doi:10.1021/ol900476e.PMID 19348469.
  38. ^Katritzky A. R.; Meth-Cohn O.;Rees Ch. W. (1995). Gilchrist, T. L. (ed.).Synthesis: Carbon with Three or Four Attached Heteroatoms. Comprehensive Organic Functional Group Transformations. Vol. 6 (First ed.). New York: Elsevier. p. 283.ISBN 978-0-08-040604-6.
  39. ^ГОСТ 52407-2005. Вода питьевая. Методы определения жесткости. Moscow: Стандартинформ. 2006.
  40. ^"Cesium Chloride".Complementary and Alternative Medicine: Herbs, Vitamins, and Minerals. American Cancer Society. 30 November 2008. Archived fromthe original on 2011-08-17. Retrieved2011-05-13.
  41. ^"FDA alerts health care professionals of significant safety risks associated with cesium chloride". Food and Drug Administration. July 23, 2018.[dead link]
  42. ^"FDA blacklists cesium chloride, ineffective and dangerous naturopathic cancer treatment".Science-Based Medicine. August 2, 2018.
  43. ^abCesiumArchived 2011-10-30 at theWayback Machine. Mineral Commodity Summaries January 2010. U.S. Geological Survey
  44. ^Carrea, JR; Gleason, G; Shaw, J; Krontz, B (1964)."The direct diagnosis of myocardial infarction by photoscanning after administration of cesium-131"(PDF).American Heart Journal.68 (5):627–36.doi:10.1016/0002-8703(64)90271-6.hdl:2027.42/32170.PMID 14222401.
  45. ^McGeehan, John T. (1968). "Cesium 131 Photoscan: Aid in the Diagnosis of Myocardial Infarction".JAMA: The Journal of the American Medical Association.204 (7):585–589.doi:10.1001/jama.1968.03140200025006.PMID 5694480.
  46. ^Tver'yanovich, Y. S.; et al. (1998). "Optical absorption and composition of the nearest environment of neodymium in glasses based on the gallium-germanium-chalcogen system".Glass Phys. Chem.24: 446.
  47. ^Klenovskii, M.S.; Kel'man, V.A.; Zhmenyak, Yu.V.; Shpenik, Yu.O. (2010). "Electric-discharge UV radiation source based on a Xe-CsCl vapor-gas mixture".Technical Physics.55 (5):709–714.Bibcode:2010JTePh..55..709K.doi:10.1134/S1063784210050178.S2CID 120781022.
  48. ^Klenovskii, M.S.; Kel'man, V.A.; Zhmenyak, Yu.V.; Shpenik, Yu.O. (2013). "Luminescence of XeCl* and XeBr* exciplex molecules initiated by a longitudinal pulsed discharge in a three-component mixture of Xe with CsCl and CsBr vapors".Optics and Spectroscopy.114 (2):197–204.Bibcode:2013OptSp.114..197K.doi:10.1134/S0030400X13010141.S2CID 123684289.
  49. ^"Тугоплавкие и химически активные металлы". Migatronic. Retrieved2011-02-24.
  50. ^Morris, Ch. G., ed. (1992)."Cesium chloride".Academic Press Dictionary of Science and Technology. San Diego: Academic Press. p. 395.ISBN 978-0-12-200400-1.
  51. ^ab"Cesium Chloride MSDS"(PDF).Cesium Fine Chemicals. Cabot Corporation. Archived fromthe original(PDF) on 2011-09-28. Retrieved2011-04-11.
  52. ^Kogel, J. E.; Trivedi, N. C.; Barker, J. M, eds. (2006).Industrial Minerals & Rocks: Commodities, Markets, and Uses (7th ed.). Littleton: Society for Mining, Metallurgy, and Exploration. p. 1430.ISBN 978-0-87335-233-8.
  53. ^Biel, Martin; Christian Wahl-Schott; Stylianos Michalakis; Xiangang Zong (2009). "Hyperpolarization-Activated Cation Channels: From Genes to Function".Physiological Reviews.89 (3):847–85.doi:10.1152/physrev.00029.2008.PMID 19584315.S2CID 8090694.
  54. ^"Chemical Safety Data: Caesium chloride".Hands-on Science (H-Sci) Project: Chemical Safety Database. Physical and Theoretical Chemistry Laboratory, Oxford University. Archived fromthe original on 2011-08-07. Retrieved2011-04-08.
  55. ^"Safety data for caesium chloride".Chemical and Other Safety Information. The Physical and Theoretical Chemistry Laboratory Oxford University. Archived fromthe original on 2010-11-22. Retrieved2011-04-08.
  56. ^Lazarev N.V. and Gadaskina, I.D., ed. (1977).Вредные вещества в промышленности. Справочник для химиков, инженеров и врачей (in Russian). Vol. 3 (7 ed.). St. Petersburg: Khimiya. pp. 328–329.
  57. ^Melnikov, P; Zanoni, LZ (June 2010). "Clinical effects of cesium intake".Biological Trace Element Research.135 (1–3):1–9.Bibcode:2010BTER..135....1M.doi:10.1007/s12011-009-8486-7.PMID 19655100.S2CID 19186683.
  58. ^The Radiological Accident in Goiânia. Vienna:IAEA. 1988.ISBN 978-92-0-129088-5.. See pp. 1–6 for summary and p. 22 for the source description
  59. ^"The Worst Nuclear Disasters".Time. 2009.

Bibliography

[edit]
Wikimedia Commons has media related toCaesium chloride.
  • Haynes, William M., ed. (2011).CRC Handbook of Chemistry and Physics (92nd ed.). Boca Raton, Florida:CRC Press.ISBN 1-4398-5511-0.
  • Lidin, R. A; Andreeva, L. L.; Molochko V. A. (2006).Константы неорганических веществ: справочник (Inorganic compounds: data book). Moscow.ISBN 978-5-7107-8085-5.{{cite book}}: CS1 maint: location missing publisher (link)
  • Plyushev, V. E.; Stepin B. D. (1970).Химия и техtestнология соединений лития, рубидия и цезия (in Russian). Moscow: Khimiya.
Compounds withnoble gases
Compounds withhalogens
Oxides andhydroxides
Compounds withchalcogens
Compounds withpnictogens
Compounds withgroup 14 elements
Compounds withgroup 13 elements
Compounds withtransition metals
Organocaesium compounds
Other compounds
Salts and covalent derivatives of thechloride ion
HClHe
LiClBeCl2B4Cl4
B12Cl12
BCl3
B2Cl4
+BO3
C2Cl2
C2Cl4
C2Cl6
CCl4
+C
+CO3
NCl3
ClN3
+N
+NO3
ClxOy
Cl2O
Cl2O2
ClO
ClO2
Cl2O4
Cl2O6
Cl2O7
ClO4
+O
ClF
ClF3
ClF5
Ne
NaClMgCl2AlCl
AlCl3
Si5Cl12
Si2Cl6
SiCl4
P2Cl4
PCl3
PCl5
+P
S2Cl2
SCl2
SCl4
+SO4
Cl2Ar
KClCaCl
CaCl2
ScCl3TiCl2
TiCl3
TiCl4
VCl2
VCl3
VCl4
VCl5
CrCl2
CrCl3
CrCl4
MnCl2
MnCl3
FeCl2
FeCl3
CoCl2
CoCl3
NiCl2CuCl
CuCl2
ZnCl2GaCl
GaCl3
GeCl2
GeCl4
AsCl3
AsCl5
+As
Se2Cl2
SeCl2
SeCl4
BrClKr
RbClSrCl2YCl3ZrCl2
ZrCl3
ZrCl4
NbCl3
NbCl4
NbCl5
MoCl2
MoCl3
MoCl4
MoCl5
MoCl6
TcCl3
TcCl4
RuCl2
RuCl3
RuCl4
RhCl3PdCl2AgClCdCl2InCl
InCl2
InCl3
SnCl2
SnCl4
SbCl3
SbCl5
Te3Cl2
TeCl2
TeCl4
ICl
ICl3
XeCl
XeCl2
XeCl4
CsClBaCl2*LuCl3
177LuCl3
HfCl4TaCl3
TaCl4
TaCl5
WCl2
WCl3
WCl4
WCl5
WCl6
ReCl3
ReCl4
ReCl5
ReCl6
OsCl2
OsCl3
OsCl4
OsCl5
IrCl2
IrCl3
IrCl4
PtCl2
PtCl4
PtCl2−6
AuCl
(Au[AuCl4])2
AuCl3
AuCl4
Hg2Cl2
HgCl2
TlCl
TlCl3
PbCl2
PbCl4
BiCl3PoCl2
PoCl4
AtClRn
FrClRaCl2**LrCl3RfCl4DbCl5SgO2Cl2BhO3ClHsMtDsRgCnNhFlMcLvTsOg
 
*LaCl3CeCl3PrCl3NdCl2
NdCl3
PmCl3SmCl2
SmCl3
EuCl2
EuCl3
GdCl3TbCl3DyCl2
DyCl3
HoCl3ErCl3TmCl2
TmCl3
YbCl2
YbCl3
**AcCl3ThCl3
ThCl4
PaCl4
PaCl5
UCl3
UCl4
UCl5
UCl6
NpCl3
NpCl4
PuCl3
PuCl4
PuCl2−6
AmCl2
AmCl3
CmCl3BkCl3CfCl3
CfCl2
EsCl2
EsCl3
FmCl2MdCl2NoCl2
Authority control databasesEdit this at Wikidata
Retrieved from "https://en.wikipedia.org/w/index.php?title=Caesium_chloride&oldid=1321177366"
Categories:
Hidden categories:

[8]ページ先頭

©2009-2025 Movatter.jp